维修栅栏

问题描述:

小z最近当上了农场主!不过,还没有来得及庆祝,一件棘手的问题就摆在了小z的面前。农场的栅栏,由于年久失修,出现了多处破损。栅栏是由n块木板组成的,每块木板可能已经损坏也可能没有损坏。小z知道,维修连续m个木板(这m个木板不一定都是损坏的)的费用是sqrt(m)。可是,怎样设计方案才能使总费用最低呢?小z想请你帮帮忙。

输入格式:

输入文件的第一行包含一个整数n,表示栅栏的长度。

第二行包含n个由空格分开的整数(长整型范围内)。如果第i个数字是0,则表示第i块木板已经损坏,否则表示没有损坏。

输出格式:

输出文件中仅包含一个实数,表示最小维修费用。

注意:答案精确到小数点后3位。

数据规模:

30%的数据中,n<=20。

100%的数据中,n<=2500。

输入

9

0 –1 0 1 2 3 0 –2 0

输出

3.000

【解题思路】

对于每一个坏掉木板,我们要思考的就是,加入前面的一起修,还是单独修,而加入前面木板组的一起修,也要看看是以哪个木板开始木板组,所以,可以写出状态转移方程

f[i]=min(f[i],f[j]+sqrt(i-j));(0<=j<=i)

【参考程序】

#include<iostream>
#include<cstdio>
#include<cmath>
#include<iomanip>
using namespace std;
int n,a[2501];
double f[2501];
int main()
{
freopen("fence.in","r",stdin);
freopen("fence.out","w",stdout);
cin>>n;
for (int i=1;i<=n;i++) cin>>a[i];
f[0]=0;
for (int i=1;i<=n;i++)
{
f[i]=0xfff;
if (a[i]!=0) f[i]=f[i-1];
for (int j=0;j<i;j++)
f[i]=min(f[i],f[j]+sqrt(i-j));
}
cout<<fixed<<setprecision(3)<<f[n];
return 0;
}
05-13 17:06