//有向图的拓扑排序
//杨鑫
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_NAME 3
#define MAX_VERTEX_NUM 20
typedef int InfoType; //存放网的权值
typedef char VertexType[MAX_NAME]; //字符串类型
typedef enum{DG, DN, AG, AN}GraphKind; //{有向图,有向网,无向图,无向网}
//图的邻接表存储
typedef struct ArcNode
{
int adjvex; //该弧所指向的顶点的位置
struct ArcNode *nextarc; //指向吓一条的指针
InfoType *info; //网的权值指针
}ArcNode; typedef struct VNode
{
VertexType data; //顶点信息
ArcNode *firstarc; //第一个表结点的地址,指向第一条依附该顶点的弧的指针
}VNode, AdjList[MAX_VERTEX_NUM]; //头结点 typedef struct
{
AdjList vertices;
int vexnum, arcnum; //图的当前顶点数和弧数
int kind; //图的种类标志
}ALGraph; //若G中存在顶点u,则返回该顶点在图中的位置。都则返回-1
int LocateVex(ALGraph G, VertexType u)
{
int i;
for(i = 0; i < G.vexnum; ++i)
{
if(strcmp(u, G.vertices[i].data) == 0)
return i;
return -1;
}
} //採用邻接表存储结构,构造没有相关信息的图G(用一个函数构造4种图)
int CreateGraph(ALGraph *G)
{
int i, j, k;
int w; //权值
VertexType va, vb;
ArcNode *p;
printf("请输入图的类型(有向图:0,有向网:1。无向图:2,无向网:3):");
scanf("%d", &(*G).kind);
printf("请输入图的顶点数和边数:(以空格间隔): \n");
scanf("%d%d", &(*G).vexnum, &(*G).arcnum);
printf("请输入%d个顶点的值(小于%d个字符):\n", (*G).vexnum, MAX_NAME);
for(i = 0; i < (*G).vexnum; ++i) //构造顶点向量
{
scanf("%s", (*G).vertices[i].data);
(*G).vertices[i].firstarc = NULL;
}
if((*G).kind == 1 || (*G).kind == 3) //网
{
printf("请顺序输入每条弧(边)的权值,弧尾和弧头(以空格作为间隔):\n");
}
else //图
{
printf("请顺序输入每条弧(边)的弧尾和弧头(以空格作为间隔):\n");
}
for(k = 0; k < (*G).arcnum; ++k)
{
if((*G).kind == 1 || (*G).kind == 3)
scanf("%d%s%s", &w, va, vb);
else
scanf("%s%s", va, vb);
i = LocateVex(*G, va); //弧尾
j = LocateVex(*G, vb); //弧头
p = (ArcNode*)malloc(sizeof(ArcNode));
p->adjvex = j;
if((*G).kind == 1 || (*G).kind == 3)
{
p->info = (int *)malloc(sizeof(int));
*(p->info) = w;
}
else
{
p->info = NULL;
}
p->nextarc = (*G).vertices[i].firstarc; //插在表头
(*G).vertices[i].firstarc = p;
if((*G).kind >= 2) //无向图或网。产生第二个表结点
{
p = (ArcNode*)malloc(sizeof(ArcNode));
p->adjvex = i;
if((*G).kind == 3)
{
p->info = (int*)malloc(sizeof(int));
*(p->info) = w;
}
else
{
p->info = NULL;
}
p->nextarc = (*G).vertices[j].firstarc; //插在表头
(*G).vertices[j].firstarc = p;
}
}
return 1;
} //输出图的邻接表G
void Display(ALGraph G)
{
int i;
ArcNode *p;
switch(G.kind)
{
case DG:
printf("有向图\n");
break;
case DN:
printf("有向网\n");
break;
case AG:
printf("无向图\n");
break;
case AN:
printf("无向网\n");
}
printf("%d 个顶点: \n", G.vexnum);
for(i = 0; i < G.vexnum; ++i)
{
printf("%s ", G.vertices[i].data);
}
printf("\n%d条弧(边):\n", G.arcnum);
for(i = 0; i < G.vexnum; i++)
{
p = G.vertices[i].firstarc;
while(p)
{
if(G.kind <= 1)
{
printf("%s->%s", G.vertices[i].data, G.vertices[p->adjvex].data);
if(G.kind == DN)
printf(":%d ", *(p->info));
}
else
{
if(i < p->adjvex)
{
printf("%s--%s", G.vertices[i].data, G.vertices[p->adjvex].data);
if(G.kind == AN)
printf(":%d ", *(p->info));
}
}
p = p->nextarc; }
printf("\n");
}
} //求顶点的入度
void FindInDegree(ALGraph G, int indegree[])
{
int i;
ArcNode *p;
//赋初值
for(i = 0; i < G.vexnum; i++)
{
indegree[i] = 0;
}
for(i = 0; i < G.vexnum; i++)
{
p = G.vertices[i].firstarc;
while(p)
{
indegree[p->adjvex]++;
p = p->nextarc;
} } } //栈类型
typedef int SElemType;
#define STACK_INIT_SIZE 10 //存储空间初始分配量
#define STACKINCREMENT 2 //存储空间分配增量 //栈的顺序存储结构表示
typedef struct SqStack
{
SElemType *base; //基地址
SElemType *top; //栈顶指针
int stacksize; //当前已经分配的存储空间
}SqStack; //构造一个空栈
int InitStack(SqStack *S)
{
//为栈底分分配一个指定大小的存储空间
(*S).base = (SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));
if(!(*S).base)
exit(0);
(*S).top = (*S).base; //栈底与栈顶指针同样
(*S).stacksize = STACK_INIT_SIZE;
return 1;
} //若栈S为空栈(栈底指针和栈顶指针同样), 则返回1。否则返回0
int StackEmpty(SqStack S)
{
if(S.top == S.base)
return 1;
else
return 0;
} //插入元素e为新的栈顶元素
int Push(SqStack *S, SElemType e)
{
if((*S).top - (*S).base >= (*S).stacksize)
{
(*S).base = (SElemType *)realloc((*S).base,((*S).stacksize + STACKINCREMENT)*sizeof(SElemType));
if(!(*S).base)
exit(0);
(*S).top = (*S).base + (*S).stacksize;
(*S).stacksize += STACKINCREMENT;
}
*((*S).top)++= e;
return 1;
} //若栈不为空,则删除S栈顶元素用e返回其值。并返回1。否则返回0
int Pop(SqStack *S, SElemType *e)
{
if((*S).top == (*S).base)
{
return 0;
}
*e = *--(*S).top;
return 1;
} //有向图的G採用邻接表存储结构。若G无回路,则输出G的顶点的一个拓扑结构
int TopologicalSort(ALGraph G)
{
int i, k, count, indegree[MAX_VERTEX_NUM];
SqStack S;
ArcNode *p;
FindInDegree(G, indegree);
InitStack(&S);
for(i = 0; i < G.vexnum; ++i)
{
if(!indegree[i])
Push(&S, i);
count = 0;
//栈不空
while(!StackEmpty(S))
{
Pop(&S, &i);
printf("%s", G.vertices[i].data); //输出i号顶点并计数
++count;
//对i号顶点的每一个邻接点的入度减1
for(p == G.vertices[i].firstarc; p; p = p->nextarc)
{
k = p->adjvex;
if(!(--indegree[k])) //若入度减为0,则入栈
Push(&S, k);
}
}
if(count < G.vexnum)
{
printf("此有向图有回路\n");
return 0;
}
else
{
printf("为一个拓扑序列!!\n");
}
}
} int main()
{
ALGraph f;
printf("请选择有向图\n");
CreateGraph(&f);
Display(f);
TopologicalSort(f);
return 0;
}
结果:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">