POJ3090 给定一个坐标系范围 求不同的整数方向个数
分析: 除了三个特殊方向(y轴方向 x轴方向 (1,1)方向)其他方向的最小向量表示(x,y)必然互质
所以对欧拉函数前N项求和 乘2(关于(1,1)对称)再+3就是答案
给出代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long int LL;
LL getPrime(bool notprime[],LL prime[],LL N)
{
LL tot=0;
for(LL i=2;i<=N;i++)
{
if(!notprime[i]) prime[tot++]=i;
for(LL j=0;j<tot;j++)
{
if(prime[j]*i>N)break;
notprime[prime[j]*i]=true;
if(i%prime[j]==0)break;
}
}
return tot;
}
LL pow_mod(LL n,LL k,LL p)
{
if(k==0)return 1;
LL w=1;
if(k&1)w=n%p;
LL ans=pow_mod(n*n%p,k>>1,p);
return ans*w%p;
}
bool Miller_Rabin(LL n,LL a,LL d)
{
if(n==2)return true;
if(n==a)return true;
if(n%a==0)return false;
if((n&1)==0)return false;
while(!(d&1))d=d>>1;
LL t=pow_mod(a,d,n);
if(t==1)return true;//特别注意!!
while((d!=n-1)&&(t!=1)&&(t!=n-1))
{
t=(LL)t*t%n;
d=d<<1; } return (t==n-1||(d&1)==1);
}
bool isPrime(LL n,LL times)
{
if(n<2)return false;
LL a[4]={2,3,5,7};
for(LL i=0;i<4;i++){if(!Miller_Rabin(n,a[i],n-1))return false;}
return true;
}
void Factor(LL n,LL a[],LL b[],LL &tot)
{
LL temp,i,now;
temp=(LL)((double)sqrt(n)+1);
tot=0;
now=n;
for(i=2;i<=temp;i++)
if(now%i==0)
{
a[tot]=i;
b[tot]=0;
while(now%i==0)
{
b[tot]++;
now/=i;
}
tot++;
}
if(now!=1)
{
a[tot]=now;
b[tot++]=1;
}
}
LL digitsum(LL n)
{
LL ans=0;
for(LL i=0;;i++)
{
LL div=pow(10,i);
if((n/div)==0)return ans;
ans+=(n%(div*10))/div;
}
}
void getPhi(LL mindiv[],LL phi[],LL max)
{
max=max+1;
for(LL i=1;i<max;i++)
mindiv[i]=i;
for(LL i=2;i<(LL)(sqrt(max)+1);i++)
{
if(mindiv[i]==i)
{
for(LL j=i*i;j<max;j+=i)
mindiv[j]=i;
}
}
memset(phi,0,sizeof(phi));
phi[1]=1;
for(LL i=2;i<max;++i)
{
phi[i]=phi[i/mindiv[i]];
if(((i/mindiv[i])%mindiv[i])==0)phi[i]*=mindiv[i];
else phi[i]*=mindiv[i]-1;
}
}
void getMobius(LL mu[],LL max)
{
for(LL i=1;i<=max;i++)
{
LL target=i==1?1:0;
LL delta=target-mu[i];
mu[i]=delta;
for(LL j=i+i;j<=max;j+=i)
mu[j]+=delta;
}
}
LL mindiv[1001],phi[1001];
int main()
{
//freopen("t.txt","r",stdin);
//freopen("1.txt","w",stdout);
getPhi(mindiv,phi,1000);
LL sum[1001];
sum[1]=0;
sum[2]=1;
for(int i=3;i<=1000;i++)
sum[i]=sum[i-1]+phi[i];
int np;
scanf("%d",&np);
for(int i=1;i<=np;i++)
{
int now;
scanf("%d",&now);
LL ans=sum[now]*2+3;
printf("%d %d %lld\n",i,now,ans);
}
return 0;
}