题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190
简单的欧拉函数题,实际上就是求gcd(x,y)=1, 0<=x,y<=n的对数。。
//STATUS:C++_AC_24MS_1584KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef long long LL;
typedef unsigned long long ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End int phi[N],prime[N];
int cnt; void phitable(int n)
{
int i,j;
cnt=;phi[]=;
for(i=;i<=n;i++){
if(!phi[i]){
prime[cnt++]=i;
phi[i]=i-;
}
for(j=;j<cnt && i*prime[j]<=n;j++){
if(i%prime[j]){
phi[i*prime[j]]=phi[i]*(prime[j]-);
}else {phi[i*prime[j]]=phi[i]*prime[j];break;}
}
}
} int n; int main(){
// freopen("in.txt","r",stdin);
int i,j,ans=;
scanf("%d",&n);
phitable(n);
for(i=;i<n;i++)ans+=phi[i];
printf("%d\n",ans<<|); return ;
}