题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190

看到这道题首先想到了NOI2010的能量采集,这不就是赤裸裸的弱化版吗?直接上莫比乌斯反演就行了。

令$f(d)=\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==d]$

则有$g(d)=\sum_{i=1}^n\sum_{j=1}^n[d|gcd(i,j)]=\frac{n}{d}\frac{n}{d}=\sum_{d|n}f(d)$

由莫比乌斯反演得$f(d)=\sum_{d|n}μ(\frac{n}{d})F(n)=\sum_{x=1}^nμ(x)\frac{n}{dx}\frac{n}{dx}$

然而并没有写,因为发现有更简单的做法。

其实我们发现除开对角线单看一半,就是求小于n的x的phi值的和是多少,根据$gcd(a,b)=1$容易观察出来,然后最后加上对角线还有x轴y轴上三个特殊的点就可以了。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int p[],cnt=;
int phi[];
bool vis[];
void sieve(){
for(int i=;i<=;i++){
if(!vis[i]){
p[++cnt]=i;
phi[i]=i-;
}
for(int j=;p[j]*i<=&&j<=cnt;j++){
vis[i*p[j]]=true;
if(i%p[j]==){
phi[i*p[j]]=phi[i]*p[j];
break;
}
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
}
int N;
int main(){
sieve();
scanf("%d",&N);
ll ans=;
for(int i=;i<N;i++) ans+=phi[i];
ans=ans*+;
printf("%lld\n",ans);
return ;
}
05-19 18:31