一、题目回顾
题目链接:Anti-prime Sequences
Sample Input
1 10 2
1 10 3
1 10 5
40 60 7
0 0 0
Sample Output
1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:求n到m的一个排列,满足任意连续的k(2<=k<=d)个数的和都不为素数。
二、解题思路
- dfs+素数打表
三、代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 10001;
int ans[1001];
int n,m,d,flag;
int prime[maxn];
bool vis[1001]; void isPrime()
{
/* memset(prime,1,sizeof(prime));
prime[1] = 0;
for (int i=2;i<=10000;i++)
if (prime[i])
for (int j=i+i;j<=10000;j+=i)
prime[j] = 0;*/
for(int i=2;i<maxn;i++)
for(int j=2;i*j<maxn;j++)
prime[i*j]=1;
} void dfs(int now)
{
if(flag) return;
if(now>m-n+1){
flag = 1;
return;
}
for(int i=n;i<=m;i++){
int biaoji = 0;
if(!vis[i]){
for(int j=2;j<=d&&now-j>=0;j++){
if(!prime[ans[now-1]+i-ans[now-j]])
biaoji = 1;
}
if(biaoji) continue;
ans[now] = ans[now-1] + i;
vis[i] = 1;
dfs(now+1);
if(flag) return;
vis[i] = 0;
}
}
} int main()
{
isPrime();
while(cin>>n>>m>>d && !(n==0&&m==0&&d==0)){
memset(vis,0,sizeof(vis));
flag = 0;
dfs(1);
if(flag==0) printf("No anti-prime sequence exists.\n");
else{
printf("%d",ans[1]);
for(int i=2;i<=m-n+1;i++)
printf(",%d",ans[i]-ans[i-1]);
printf("\n");
}
}
return 0;
}