最近应老延的要求再刷《算法进阶指南》(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~
原题链接:POJ1845
翻译版题目(其实是AcWing上的):
假设现在有两个自然数A和B,S是A的所有约数之和。
请你求出S mod 9901的值是多少。
输入格式
在一行中输入用空格隔开的两个整数A和B。
输出格式
输出一个整数,代表S mod 9901的值。
数据范围
0≤A,B≤5×10
输入样例:
2 3
输出样例:
15
注意: A和B不会同时为0。
首先看到这题就知道不能打暴力(这还用你说),那就需要找一个巧方法
那么,什么是约数呢?
约数嘛,顾名思义,可以约掉的数,其实就是因数
如果你连因数都不知道就只好自行百度了
但其实百度还挺有用的
以下是约数的定义:
但你再往下翻你会找到这个东西:
恩?这不就是质因数分解吗?
根据这个思路,我们很容易得到以下结论:
若A=P*P*...*P,那么A就等于
P*P*...*P
又因为A的约数集合可以看做其每一个质因数分别相乘得出的结果的集合
举个例子便于理解:
12=2*3
所以12的因数集合为
{1,2,3,2*2,2*3,2*2*3}={1,2,3,4,6,12}
可以看做把12的质因数分别组合相乘
那么我们把这个式子加起来可以得到
1+2+3+2*2+2*3+2*2*3
稍微改造一下
(1+2+2*2)(1+3)
似乎有点眉目了?
那么A的约数之和由此可得:
(1+P+P+....+P)*(1+P+P+....+P)*....*(1+P+P+....+P)
(这段真他喵的难打)
根据同余定理,我们在求A%9901就相当于以上每一个式子%9901再相乘
那么问题就又到了如何求(1+P+P+....+P)
因为同余对于除法没有分配率,所以这道题不能使用等比数列求和公式....
所以这时候我们想到了.....
分治!
将求解(1+P+P+....+P)定义为sum(p,c),则有:
当c为奇数时:
sum(p,c)=(1+P+....+P)+(1+P+...+P)
int m=;
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
m++,yz[m]=i;//yz数组存分解出的因子
while(n%i==)//除掉所有的i
{
n/=i;
gs[m]++;//gs数组存每个因子的个数
}
}
if(n>)
m++,yz[m]=n,gs[m]=;
for(int i=;i<=m;i++)
printf("%d^%d\n",yz[i],gs[i]);
还有一种更优的算法,叫做“Pollard's Rho”算法,但有点复杂(我懒得写),可以自行去查 已经帮你查好了←
那么这道题就可以写出来了~(我相信你会快速幂)
以下AC代码
#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
using namespace std;
const int N=;
int yz[],gs[];//分别用来存储质因子及其个数
int quick(int a,int b)//快速幂
{
long long t;
if(b==)return a%N;
if(b%==)
{
t=quick(a,b/);
return t%N*t%N;
}
else
{
t=quick(a,b/);
t=t%N*t%N;
t=t%N*a%N;
return t%N;
}
}
long long sum(int p,int c)
{
if(c==) return ;//边界
if(c==) return p+;//边界*2,可写可不写,开始没加1出了点问题
if(c%)
return (+quick(p,(c+)/))%N*sum(p,c/)%N;//奇数
else
return (+quick(p,c/))%N*sum(p,c/-)%N+quick(p,c);//偶数
}
long long czs(int n,int b)//分解质因数
{
if(n==) return ;//特殊情况直接返回
if(b==) return ;
int m=,ans=;
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
m++,yz[m]=i;
while(n%i==)
{
n/=i;
gs[m]++;
}
}
if(n>)
m++,yz[m]=n,gs[m]=;
for(int i=;i<=m;i++)
ans=(ans%N*sum(yz[i],gs[i]*b)%N)%N;
return ans%N;
}
int main()
{
int a,b;
scanf("%d%d",&a,&b);
printf("%lld",czs(a,b)%N);
return ;
}
//写这么多%N是因为数据溢出www
//那个数据在下方,可以试一试能不能过
//输入:50000000 50000000
//输出:5531
终于完了 赶紧刷B站学习去了
感谢观看~ヽ( ̄▽ ̄)ノ