\(A_\alpha(x)\) \(\qquad\) \(a^2+b^2=c^2 \) \(\qquad\) \(\sum\limits_{m=0}^\infty\)
\(\frac{(-1)^m}{m!}\) \(\qquad\) \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\) \(\qquad\) \(\left(x+a\right)^n=\sum_{k=0}^{n}{\binom{n}{k}x^ka^{n-k}}\)
\(\lim\limits_{n\rightarrow\infty}{\left(1+\frac{1}{n}\right)^n}\)
\(\lim\limits_{n\rightarrow\infty}\) \(\qquad\) \(\lim\limits_{n\rightarrow0}\) \(\qquad\) \(\lim\limits_{x\rightarrow x_0}\)
\(\lim\limits_{x\rightarrow x_0}f{\left(x\right)}=f{\left(x_0\right)}\)
\(\Delta y\) \(\qquad\) \(\frac{\pi}{2}\)\(\qquad\) \(\frac{\partial y}{\partial x}\) \(\qquad\) \(P\binom{n}{k}\) \(\qquad\) \(\sqrt[3]{x}\)
\(a^{3}_{ij}\)
\(x\neg y \)
\(\int_{0}^{\frac{\pi}{2}}\)
\(\prod_\epsilon\)
\(x\le y\)
\(x\ge y\)
\(x\approx y\)
\(x\times y\)
\(x\pm y\)
\(x\div y\)
\(a\in A\)
•\(f\left(x\right)\)在\(x_0\)处(或按\(\left(x-x_0\right)\)的幂展开)的带有佩亚诺余项的n阶泰勒公式→若\(x_0=0\)→带有佩亚诺余项的麦克劳林公式
\(R_n\left(x\right)=o\left(\left(x-x_0\right)^{n}\right)\)由洛必达法则证出
•\(f\left(x\right)\)在\(x_0\)处(或按\(\left(x-x_0\right)\)的幂展开)的带有拉格朗日余项的n阶泰勒公式→若\(x_0=0\)→带有拉格朗日余项的麦克劳林公式
\(R_n\left(x\right)=\frac{f^{\left(n+1\right)}\left(x_i\right)}{\left(n+1\right)!}\left(x-x_0\right)^{n+1}\)由柯西中值定理证出
latex学习链接:http://www.mohu.org/info/symbols/symbols.htm