\(A_\alpha(x)\)      \(\qquad\)      \(a^2+b^2=c^2 \)      \(\qquad\)      \(\sum\limits_{m=0}^\infty\)

\(\frac{(-1)^m}{m!}\)      \(\qquad\)           \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)     \(\qquad\)        \(\left(x+a\right)^n=\sum_{k=0}^{n}{\binom{n}{k}x^ka^{n-k}}\)

\(\lim\limits_{n\rightarrow\infty}{\left(1+\frac{1}{n}\right)^n}\)

\(\lim\limits_{n\rightarrow\infty}\)     \(\qquad\)          \(\lim\limits_{n\rightarrow0}\)        \(\qquad\)         \(\lim\limits_{x\rightarrow x_0}\)

\(\lim\limits_{x\rightarrow x_0}f{\left(x\right)}=f{\left(x_0\right)}\)

\(\Delta y\)   \(\qquad\)   \(\frac{\pi}{2}\)\(\qquad\)      \(\frac{\partial y}{\partial x}\)     \(\qquad\)    \(P\binom{n}{k}\)     \(\qquad\)     \(\sqrt[3]{x}\)

\(a^{3}_{ij}\)

\(x\neg y \)

\(\int_{0}^{\frac{\pi}{2}}\)

\(\prod_\epsilon\)

\(x\le y\)

\(x\ge y\)

\(x\approx y\)

\(x\times y\)

\(x\pm y\)

\(x\div y\)

\(a\in A\)

•\(f\left(x\right)\)在\(x_0\)处(或按\(\left(x-x_0\right)\)的幂展开)的带有佩亚诺余项的n阶泰勒公式→若\(x_0=0\)→带有佩亚诺余项的麦克劳林公式

     \(R_n\left(x\right)=o\left(\left(x-x_0\right)^{n}\right)\)由洛必达法则证出

•\(f\left(x\right)\)在\(x_0\)处(或按\(\left(x-x_0\right)\)的幂展开)的带有拉格朗日余项的n阶泰勒公式→若\(x_0=0\)→带有拉格朗日余项的麦克劳林公式

\(R_n\left(x\right)=\frac{f^{\left(n+1\right)}\left(x_i\right)}{\left(n+1\right)!}\left(x-x_0\right)^{n+1}\)由柯西中值定理证出

latex学习链接:http://www.mohu.org/info/symbols/symbols.htm

05-10 23:09