Dertouzos
Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1415 Accepted Submission(s): 443
Peter has two positive integers n and d. He would like to know the number of integers below n whose maximum positive proper divisor is d.
The first line contains two integers n and d (2≤n,d≤109).
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9
100 13
2
1
0
0
0
0
0
4
一:直接暴力,这种方法是存在缺点的,可能会被卡数据。
#include<iostream>
#include<stdio.h>
using namespace std;
const int maxx=;
bool flag[maxx];
int prime[maxx];
int main(){
int cnt=;
for(int i=;i<maxx;i++){
if(!flag[i]){
for(int j=i<<;j<maxx;j+=i){
flag[j]=;
}
prime[cnt++]=i;
} }
// for(int i=0;i<100;i++) cout<<prime[i]<<endl;
int t;
scanf("%d",&t);
int n,d;
while(t--){
scanf("%d%d",&n,&d);
int ans=;
for(int i=;i<=cnt-&&prime[i]<=d&&prime[i]*d<n;i++){
if(d%prime[ans]==){
break;
}
ans++;
}
if(prime[ans]>d||prime[ans]*d>=n);
else ans++;
printf("%d\n",ans);
}
return ;
}
二、官方题解
Dertouzos
随便推导下, 令y=xdy=xd, 如果dd是yy的maximum positive proper divisor, 显然要求xx是yy的最小质因子. 令mp(n)mp(n)表示nn的最小质因子, 那么就有x \le mp(d)x≤mp(d), 同时有y < ny<n, 那么x \le \lfloor \frac{n-1}{d} \rfloorx≤⌊dn−1⌋. 于是就是计算有多少个素数xx满足x \le \min{mp(d), \lfloor \frac{n-1}{d} \rfloor}x≤min{mp(d),⌊dn−1⌋}.
当dd比较大的时候, \lfloor \frac{n-1}{d} \rfloor⌊dn−1⌋比较小, 暴力枚举xx即可. 当dd比较小的时候, 可以直接预处理出答案. 阈值设置到10^6 \sim 10^7106∼107都可以过.