http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

采用基于区域的自动种子区域生长法的彩色图像分割方法

From: Brian Kent: Density Based Clustering in Python

[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise-LMLPHP

[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise-LMLPHP

聚类演示:https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

print(__doc__)

import numpy as np

from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler # #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
random_state=0) X = StandardScaler().fit_transform(X) # #############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_ # Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels)) # #############################################################################
# Plot result
import matplotlib.pyplot as plt # Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1] class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Result:

[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise-LMLPHP

补充,一个效果同样好的算法:Level Set Tree

[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise-LMLPHP

加载方式:

import debacl as dcl

[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise-LMLPHP

05-23 09:08