一 简介
DBSCAN:Density-based spatial clustering of applications with noise
is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.
二 原理
DBSCAN是一种基于密度的聚类算法,算法过程比较简单,即将相距较近的点(中心点和它的邻居点)聚成一个cluster,然后不断找邻居点的邻居点并加到这个cluster中,直到cluster无法再扩大,然后再处理其他未访问的点;
三 算法伪代码
子方法伪代码
DBSCAN requires two parameters: ε (eps) and the minimum number of points required to form a dense region (minPts).
DBSCAN算法主要有两个参数,一个是距离Eps,一个是最小邻居的数量MinPts,即在中心点半径Eps之内的邻居点数量超过MinPts时,中心点和邻居点才可以组成一个cluster;
四 应用代码实现
python
示例代码
def main_fun():
loc_data = [(40.8379295833, -73.70228875), (40.750613794,-73.993434906), (40.6927066969, -73.8085984165), (40.7489736586, -73.9859616017), (40.8379525833, -73.70209875), (40.6997066969, -73.8085234165), (40.7484436586, -73.9857316017)]
epsilon = 10
db = DBSCAN(eps=epsilon, min_samples=1, algorithm='ball_tree', metric='haversine').fit(np.radians(loc_data))
labels = db.labels_
print(labels)
print(db.core_sample_indices_)
print(db.components_)
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
for i in range(0, n_clusters_):
print(i)
indexs = np.where(labels == i)
for j in indexs:
print(loc_data[j]) if __name__ == '__main__':
main_fun()
主要结果说明
|
详见官方文档:https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
scala
依赖
示例代码
import breeze.linalg.DenseMatrix
import nak.cluster.{DBSCAN, GDBSCAN, Kmeans} val matrix = DenseMatrix(
(40.8379295833, -73.70228875),
(40.6927066969, -73.8085984165),
(40.7489736586, -73.9859616017),
(40.8379525833, -73.70209875),
(40.6997066969, -73.8085234165),
(40.7484436586, -73.9857316017),
(40.750613794,-73.993434906)) val gdbscan = new GDBSCAN(
DBSCAN.getNeighbours(epsilon = 1000.0, distance = Kmeans.euclideanDistance),
DBSCAN.isCorePoint(minPoints = 1)
)
val clusters = gdbscan cluster matrix
clusters.foreach(cluster => {
println(cluster.id + ", " + cluster.points.length)
cluster.points.foreach(p => p.value.data.foreach(println))
})
详见官方文档:https://github.com/scalanlp/nak
算法细节详见参考
参考:A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
其他:
http://www.cs.fsu.edu/~ackerman/CIS5930/notes/DBSCAN.pdf
https://www.oreilly.com/ideas/clustering-geolocated-data-using-spark-and-dbscan