一 简介

DBSCAN:Density-based spatial clustering of applications with noise

is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.

【原创】大叔算法分享(5)聚类算法DBSCAN-LMLPHP

二 原理

DBSCAN是一种基于密度的聚类算法,算法过程比较简单,即将相距较近的点(中心点和它的邻居点)聚成一个cluster,然后不断找邻居点的邻居点并加到这个cluster中,直到cluster无法再扩大,然后再处理其他未访问的点;

三 算法伪代码

【原创】大叔算法分享(5)聚类算法DBSCAN-LMLPHP

子方法伪代码

【原创】大叔算法分享(5)聚类算法DBSCAN-LMLPHP

DBSCAN requires two parameters: ε (eps) and the minimum number of points required to form a dense region (minPts).

DBSCAN算法主要有两个参数,一个是距离Eps,一个是最小邻居的数量MinPts,即在中心点半径Eps之内的邻居点数量超过MinPts时,中心点和邻居点才可以组成一个cluster;

四 应用代码实现

python

示例代码

def main_fun():
loc_data = [(40.8379295833, -73.70228875), (40.750613794,-73.993434906), (40.6927066969, -73.8085984165), (40.7489736586, -73.9859616017), (40.8379525833, -73.70209875), (40.6997066969, -73.8085234165), (40.7484436586, -73.9857316017)]
epsilon = 10
db = DBSCAN(eps=epsilon, min_samples=1, algorithm='ball_tree', metric='haversine').fit(np.radians(loc_data))
labels = db.labels_
print(labels)
print(db.core_sample_indices_)
print(db.components_)
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
for i in range(0, n_clusters_):
print(i)
indexs = np.where(labels == i)
for j in indexs:
print(loc_data[j]) if __name__ == '__main__':
main_fun()

主要结果说明

core_sample_indices_ : array, shape = [n_core_samples]

Indices of core samples.

components_ : array, shape = [n_core_samples, n_features]

Copy of each core sample found by training.

labels_ : array, shape = [n_samples]

Cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1.

详见官方文档:https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

scala

依赖

示例代码

import breeze.linalg.DenseMatrix
import nak.cluster.{DBSCAN, GDBSCAN, Kmeans} val matrix = DenseMatrix(
(40.8379295833, -73.70228875),
(40.6927066969, -73.8085984165),
(40.7489736586, -73.9859616017),
(40.8379525833, -73.70209875),
(40.6997066969, -73.8085234165),
(40.7484436586, -73.9857316017),
(40.750613794,-73.993434906)) val gdbscan = new GDBSCAN(
DBSCAN.getNeighbours(epsilon = 1000.0, distance = Kmeans.euclideanDistance),
DBSCAN.isCorePoint(minPoints = 1)
)
val clusters = gdbscan cluster matrix
clusters.foreach(cluster => {
println(cluster.id + ", " + cluster.points.length)
cluster.points.foreach(p => p.value.data.foreach(println))
})

详见官方文档:https://github.com/scalanlp/nak

算法细节详见参考

参考:A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise

其他:

http://www.cs.fsu.edu/~ackerman/CIS5930/notes/DBSCAN.pdf

https://www.oreilly.com/ideas/clustering-geolocated-data-using-spark-and-dbscan

05-07 15:14