思路:有相同抵消,没有相同的对答案+1
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 1e5 + ;
const int M = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ; string a[], b[];
int n; map<string, int> mp;
int main(){
scanf("%d", &n);
for(int i = ; i <= n; i++) cin >> a[i], mp[a[i]]++;
int ans = ;
for(int i = ; i <= n; i++) {
cin >> b[i];
if(mp[b[i]]) {
mp[b[i]]--;
} else {
ans++;
}
}
printf("%d\n", ans);
return ;
} /*
*/
思路:求一下前缀,如果要加一个开关肯定是加在原来是关的前面一个或者后面一个,枚举一下就好啦。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ; int n, M, sum[N], fsum[N], a[N];
int main(){
scanf("%d%d", &n, &M);
for(int i = ; i <= n; i++) scanf("%d", &a[i]);
a[++n] = M;
for(int i = ; i <= n; i++) {
sum[i] = sum[i - ];
if(i & ) sum[i] += a[i] - a[i - ];
fsum[i] = a[i] - sum[i];
} int ans = sum[n];
for(int i = ; i < n; i++) {
if(i & ) {
if(a[i] > a[i - ] + ) {
int ret = a[i] - a[i - ] - ;
ret += fsum[n] - fsum[i];
ret += sum[i - ];
ans = max(ans, ret);
} if(a[i] < a[i + ] - ) {
int ret = sum[i];
ret += fsum[n] - fsum[i + ];
ret += a[i + ] - a[i] - ;
ans = max(ans, ret);
}
}
} printf("%d\n", ans);
return ;
} /*
*/
思路:离散化差分标记搞一搞
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 1e6 + + 2e5;
const int M = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ; LL n, tot, in[N], out[N], ans[N];
LL hs[N], l[N], r[N]; int main(){
scanf("%lld", &n);
for(int i = ; i <= n; i++) {
scanf("%lld%lld", &l[i], &r[i]);
hs[++tot] = l[i];
hs[++tot] = r[i];
hs[++tot] = l[i] + ;
hs[++tot] = l[i] - ;
hs[++tot] = r[i] + ;
hs[++tot] = r[i] - ;
} sort(hs + , hs + + tot);
tot = unique(hs + , hs + + tot) - hs - ; for(int i = ; i <= n; i++) {
int pos1 = lower_bound(hs + , hs + + tot, l[i]) - hs;
int pos2 = lower_bound(hs + , hs + + tot, r[i]) - hs;
in[pos1]++;
out[pos2]++;
} LL cnt = ;
for(int i = ; i < tot; i++) {
cnt += in[i];
ans[cnt]++;
cnt -= out[i];
LL num = hs[i + ] - hs[i] - ;
ans[cnt] += num;
} cnt += in[tot];
ans[cnt]++; for(int i = ; i <= n; i++) printf("%lld ", ans[i]);
return ;
} /*
*/
D - Yet Another Problem On a Subsequence
题目大意:给你n个数字 (n <= 1000), 问你有多少个子序列是good sequence
good sequence的定义是能变成若干个good arrays
good array 的定义是这个数组的第一个元素的值等于这个数组的length - 1。
思路: A了三题之后日常开始挂机。。。 还是太菜啦!!!!
比赛的时候感觉是个dp,但是不知到如何定义状态。。。
后来发现原来我看错了题,原来是把good sequence划分成若干个good arrays
我们定义dp[ i ],表示从第 i 个开始,并且 i 作为一个array第一个元素的的合法答案的方案数。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 1e3 + ;
const int M = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ; int a[N], dp[N], C[N][N], n; void init() {
for(int i = (C[][] = ); i < N; i++)
for(int j = (C[i][] = ); j < N; j++)
C[i][j] = (C[i - ][j] + C[i - ][j - ]) % mod;
} int main() {
init();
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
} dp[n + ] = ; for(int i = n; i >= ; i--) {
if(a[i] > ) {
for(int j = i + a[i] + ; j <= n + ; j++) {
dp[i] = (dp[i] + 1LL * dp[j] * C[j - i - ][a[i]]) % mod;
}
}
} int ans = ; for(int i = ; i <= n; i++) {
ans = (ans + dp[i]) % mod;
} printf("%d\n", ans);
return ;
}
/*
*/