100*100规模上第一象限坐标系上有1e5规模的点,每个点随时间在同一个值域内(最大10)周期递增,但初始值不同,给出一个矩阵和时间询问此时范围内点的值的和。
预处理初始时刻不同权值下的二维前缀和,对于每个询问再次遍历所有权值,累计和就好了。
/** @Date : 2017-08-12 10:28:03
* @FileName: C.cpp
* @Platform: Windows
* @Author : Lweleth ([email protected])
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; int n, q, c;
LL f[11][110][110];
int main()
{
while(cin >> n >> q >> c)
{
MMF(f);
for(int i = 0; i < n; i++)
{
int x, y, s;
scanf("%d%d%d", &x, &y, &s);
f[s][x][y]++;
}
for(int k = 0; k <= c; k++/*, cout << endl*/)
for(int i = 1; i <= 100; i++)
{
for(int j = 1; j <= 100; j++)
{
f[k][i][j] += f[k][i][j - 1] + f[k][i - 1][j] - f[k][i - 1][j - 1];
//cout << f[k][i][j] << " ";
}
//cout << endl;
} while(q--)
{
LL t, x1, y1, x2, y2;
scanf("%lld%lld%lld%lld%lld", &t, &x1, &y1, &x2, &y2);
LL ans = 0;
LL tmp = 0;
for(int i = 0; i <= 10; i++)
{
tmp = (f[i][x2][y2] - f[i][x2][y1 - 1] - f[i][x1 - 1][y2] + f[i][x1 - 1][y1 - 1]);
ans += ((i + t) % (c + 1)) * tmp;
}
printf("%lld\n", ans);
}
}
return 0;
}