题目大意:给你一棵树,随机选两个点,求它们之间路径长度是$3$的倍数的概率

题解:点分治,求出当前状态的重心,然后求出经过重心的答案,接着分治每棵子树。注意考虑重复计算的情况

卡点:

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 20010
const int inf = 0x3f3f3f3f;
inline int min(int a, int b) {return a < b ? a : b;}
inline int max(int a, int b) {return a > b ? a : b;} int head[maxn], cnt;
struct Edge {
int to, nxt, w;
} e[maxn << 1];
inline void add(int a, int b, int c) {
e[++cnt] = (Edge) {b, head[a], c}; head[a] = cnt;
e[++cnt] = (Edge) {a, head[b], c}; head[b] = cnt;
} int n, ans;
bool vis[maxn]; namespace Center_of_Gravity {
#define n nodenum
int root, MIN, n;
int sz[maxn];
void __getroot(int u, int fa) {
sz[u] = 1;
int MAX = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa && !vis[v]) {
__getroot(v, u);
sz[u] += sz[v];
MAX = max(sz[v], MAX);
}
}
MAX = max(n - sz[u], MAX);
if (MAX < MIN) MIN = MAX, root = u;
}
int getroot(int rt, int nodenum) {
Center_of_Gravity::n = nodenum;
MIN = inf;
__getroot(rt, 0);
return root;
}
#undef n
}
using Center_of_Gravity::getroot; int V[3];
void getlist(int u, int fa, int val) {
V[val]++;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa && !vis[v]) getlist(v, u, (val + e[i].w) % 3);
}
}
int calc(int u, int val = 0) {
V[0] = V[1] = V[2] = 0;
getlist(u, 0, val);
return (V[1] * V[2] << 1) + V[0] * V[0];
}
void dfs(int u) {
ans += calc(u);
vis[u] = true;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!vis[v]) {
ans -= calc(v, e[i].w);
dfs(getroot(v, Center_of_Gravity::sz[v]));
}
}
} int main() {
scanf("%d", &n);
for (int i = 1, a, b, c; i < n; i++) {
scanf("%d%d%d", &a, &b, &c);
add(a, b, c % 3);
}
dfs(getroot(1, n));
int tmp = std::__gcd(ans, n * n);
printf("%d/%d\n", ans / tmp, n * n / tmp);
return 0;
}

  

04-15 16:55