淀粉质
第二道点分治的题
关于点分治的一点理解:
所谓点分治,其实就是把要求的问题(一般与路径有关)划分成两种情况
1.路径经过rt(根节点)
2.路径在根节点的子树内
我们只需要处理情况1,因为情况2就是情况1的递归子问题
在这个过程中,要注意容斥原理的应用;
//--------------------------------------------------------------------------
关于此题:
w可预先%3(不会影响答案),注意乘法原理的应用;
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
#define up(i,l,r) for(register int i = (l); i <= (r); ++i)
#define dn(i,l,r) for(register int i = (l); i >= (r); --i)
#define ll long long
#define re register
using namespace std; template <typename T> void in(T &x) {
x = ; T f = ; char ch = getchar();
while(!isdigit(ch)) {if(ch == '-') f = -; ch = getchar();}
while( isdigit(ch)) {x = * x + ch - ; ch = getchar();}
x *= f;
} template <typename T> void out(T x) {
if(x < ) x = -x , putchar('-');
if(x > ) out(x/);
putchar(x% + );
}
//--------------------------------------------------------- const int N = ; int n;
ll ans = ; struct edge {
int v,w,nxt;
}e[N<<];int tot,head[N]; void add(int u,int v,int w) {
e[++tot].v = v;
e[tot].w = w;
e[tot].nxt = head[u];
head[u] = tot;
} //--------------------------------------------------------- bool vis[N];
int size[N],f[N];
int Tsize,rt,dis[N];
int t[]; void get_rt(int u,int fa) {
size[u] = ; f[u] = ;
for(re int i = head[u]; i ;i = e[i].nxt) {
int v = e[i].v; if(v == fa || vis[v]) continue;
get_rt(v,u); size[u] += size[v];
f[u] = max(f[u],size[v]);
}
f[u] = max(f[u],Tsize-size[u]);
if(f[u] < f[rt]) rt = u;
} void get_dis(int u,int fa) {
++t[dis[u]%];
for(re int i = head[u]; i ;i = e[i].nxt) {
int v = e[i].v; if(v == fa || vis[v]) continue;
dis[v] = (dis[u]+e[i].w)%; get_dis(v,u);
}
} ll calc(int u) {
t[] = t[] = t[] = ;
get_dis(u,);
return t[]*t[]+*t[]*t[];
} void solve(int u) {
vis[u] = ; dis[u] = ;
ans += calc(u);
for(re int i = head[u]; i ;i = e[i].nxt) {
int v = e[i].v; if(vis[v]) continue;
dis[v] = e[i].w;
ans -= calc(v);
Tsize = size[v],rt = ,f[] = n+;
get_rt(v,); solve(rt);
}
} void init() {
memset(head,,sizeof(head));
memset(vis,,sizeof(vis));
ans = ; Tsize = n,rt = ,f[] = n+;
} ll Gcd(ll a,ll b) {return b == ? a:Gcd(b,a%b);} int main() {
init();
in(n); int x,y,w;
up(i,,n-) {
in(x); in(y); in(w); add(x,y,w%),add(y,x,w%);
//技巧 mod 3
}
get_rt(,); solve(rt);
ll gcd = Gcd(ans,1ll*n*n);
out(ans/gcd); putchar('/'); out(1ll*n*n/gcd);
return ;
}