题目大意:
  给定$n(n\leq10^{11})$,求$\pi(n)$。

思路:
  计算$\pi$函数有$O(n^{\frac23})$的Lehmer算法,这里考虑$O(\frac{n^{\frac34}}{\ln n})$的洲阁筛。
  我们可以将答案分为$\leq\sqrt n$的质数个数和$>\sqrt n$的质数个数。
  其中$\leq\sqrt n$的质数个数可以线性筛预处理,而$>\sqrt n$的质数个数相当于用$\leq\sqrt n$的质数筛这$n$个数后剩下的数的个数。
  若用$f[i][j]$表示$1\sim j$中与前$i$个数互质的数的个数,则转移方程为$f[i][j]=f[i-1][j]-f[i-1][\lfloor\frac j{p_i}\rfloor]$。$\pi(n)\sim\frac n{\ln n}$,$j$有$\sqrt n$种取值,时间复杂度$O\left(\frac n{\ln\sqrt n}\right)=O\left(\frac n{\ln n}\right)$。
  当$p_{i+1}>j$时,$f[i][j]=1$。所以当$p_i>\frac j{p_i}$时,转移方程变为$f[i][j]=f[i-1][j]-1$。
  因此对于每一个$j$,只需计算$p_i^2\leq j$的$f[i][j]$即可。对于$p_i^2>j$的$j$,可以记录最后一步的$i$是多少,转移的时候把那些$1$一起减掉。答案就是一开始线性筛求出的$\leq\sqrt n$的质数个数+用$\leq\sqrt n$筛完剩下的数。注意筛完除了那些$>\sqrt n$的质数,还会剩下$1$,因此最后要把$1$去掉。
  时间复杂度$O\left(\frac{n^\frac34}{\ln n}\right)$。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int LIM=,P=;
bool vis[LIM];
int lim,p[P],sum[LIM],last[LIM*],cnt;
int64 val[LIM*],f[LIM*];
inline void sieve() {
for(register int i=;i<=lim;i++) {
if(!vis[i]) p[++p[]]=i;
sum[i]=sum[i-]+!vis[i];
for(register int j=;j<=p[]&&i*p[j]<=lim;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) break;
}
}
}
int main() {
const int64 n=getint();
lim=sqrt(n);
sieve();
for(register int64 i=;i<=n;i=n/(n/i)+) {
val[++cnt]=n/i;
}
std::reverse(&val[],&val[cnt]+);
std::copy(&val[],&val[cnt]+,&f[]);
for(register int i=;i<=p[];i++) {
for(register int j=cnt;j;j--) {
const int64 k=val[j]/p[i],pos=k<=lim?k:cnt+-n/k;
if(k<p[i]) break;
f[j]-=f[pos]+last[pos]-i+;
last[j]=i;
}
}
printf("%lld\n",sum[lim]+f[cnt]-);
return ;
}
05-26 10:01