1 AQS 简单介绍

AQS 的全称为(AbstractQueuedSynchronizer),这个类在 java.util.concurrent.locks 包下面。

AQS 原理以及 AQS 同步组件总结-LMLPHP

AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLock,Semaphore,其他的诸如 ReentrantReadWriteLock,SynchronousQueue,FutureTask 等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。

2 AQS 原理

下面大部分内容其实在 AQS 类注释上已经给出了,不过是英语看着比较吃力一点,感兴趣的话可以看看源码。

2.1 AQS 原理概览

AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

看个 AQS(AbstractQueuedSynchronizer)原理图:

AQS 原理以及 AQS 同步组件总结-LMLPHP

AQS 使用一个 int 成员变量来表示同步状态,通过内置的 FIFO 队列来完成获取资源线程的排队工作。AQS 使用 CAS 对该同步状态进行原子操作实现对其值的修改。

private volatile int state;//共享变量,使用volatile修饰保证线程可见性

状态信息通过 protected 类型的getStatesetStatecompareAndSetState进行操作

//返回同步状态的当前值
protected final int getState() {
return state;
}
// 设置同步状态的值
protected final void setState(int newState) {
state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

2.2 AQS 对资源的共享方式

AQS 定义两种资源共享方式

1)Exclusive(独占)

只有一个线程能执行,如 ReentrantLock。又可分为公平锁和非公平锁,ReentrantLock 同时支持两种锁,下面以 ReentrantLock 对这两种锁的定义做介绍:

  • 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
  • 非公平锁:当线程要获取锁时,先通过两次 CAS 操作去抢锁,如果没抢到,当前线程再加入到队列中等待唤醒。

下面来看 ReentrantLock 中相关的源代码:

ReentrantLock 默认采用非公平锁,因为考虑获得更好的性能,通过 boolean 来决定是否用公平锁(传入 true 用公平锁)。

/** Synchronizer providing all implementation mechanics */
private final Sync sync;
public ReentrantLock() {
// 默认非公平锁
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}

ReentrantLock 中公平锁的 lock 方法

static final class FairSync extends Sync {
final void lock() {
acquire(1);
}
// AbstractQueuedSynchronizer.acquire(int arg)
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 1. 和非公平锁相比,这里多了一个判断:是否有线程在等待
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}

非公平锁的 lock 方法:

static final class NonfairSync extends Sync {
final void lock() {
// 2. 和公平锁相比,这里会直接先进行一次CAS,成功就返回了
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
// AbstractQueuedSynchronizer.acquire(int arg)
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 这里没有对阻塞队列进行判断
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

总结:公平锁和非公平锁只有两处不同:

  1. 非公平锁在调用 lock 后,首先就会调用 CAS 进行一次抢锁,如果这个时候恰巧锁没有被占用,那么直接就获取到锁返回了。
  2. 非公平锁在 CAS 失败后,和公平锁一样都会进入到 tryAcquire 方法,在 tryAcquire 方法中,如果发现锁这个时候被释放了(state == 0),非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。

公平锁和非公平锁就这两点区别,如果这两次 CAS 都不成功,那么后面非公平锁和公平锁是一样的,都要进入到阻塞队列等待唤醒。

相对来说,非公平锁会有更好的性能,因为它的吞吐量比较大。当然,非公平锁让获取锁的时间变得更加不确定,可能会导致在阻塞队列中的线程长期处于饥饿状态。

2)Share(共享)

多个线程可同时执行,如 Semaphore/CountDownLatch。Semaphore、CountDownLatCh、 CyclicBarrier、ReadWriteLock 我们都会在后面讲到。

ReentrantReadWriteLock 可以看成是组合式,因为 ReentrantReadWriteLock 也就是读写锁允许多个线程同时对某一资源进行读。

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS 已经在上层已经帮我们实现好了。

2.3 AQS 底层使用了模板方法模式

同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):

  1. 使用者继承 AbstractQueuedSynchronizer 并重写指定的方法。(这些重写方法很简单,无非是对于共享资源 state 的获取和释放)
  2. 将 AQS 组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。

这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用,下面简单的给大家介绍一下模板方法模式,模板方法模式是一个很容易理解的设计模式之一。

AQS 使用了模板方法模式,自定义同步器时需要重写下面几个 AQS 提供的模板方法:

isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。

默认情况下,每个方法都抛出 UnsupportedOperationException。 这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS 类中的其他方法都是 final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。

以 ReentrantLock 为例,state 初始化为 0,表示未锁定状态。A 线程 lock()时,会调用 tryAcquire()独占该锁并将 state+1。此后,其他线程再 tryAcquire()时就会失败,直到 A 线程 unlock()到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。

再以 CountDownLatch 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后 countDown()一次,state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 await()函数返回,继续后余动作。

一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryReleasetryAcquireShared-tryReleaseShared中的一种即可。但 AQS 也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock

推荐两篇 AQS 原理和相关源码分析的文章:

3 Semaphore(信号量)-允许多个线程同时访问

synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源,Semaphore(信号量)可以指定多个线程同时访问某个资源。示例代码如下:

/**
*
* @author Snailclimb
* @date 2018年9月30日
* @Description: 需要一次性拿一个许可的情况
*/
public class SemaphoreExample1 {
// 请求的数量
private static final int threadCount = 550; public static void main(String[] args) throws InterruptedException {
// 创建一个具有固定线程数量的线程池对象(如果这里线程池的线程数量给太少的话你会发现执行的很慢)
ExecutorService threadPool = Executors.newFixedThreadPool(300);
// 一次只能允许执行的线程数量。
final Semaphore semaphore = new Semaphore(20); for (int i = 0; i < threadCount; i++) {
final int threadnum = i;
threadPool.execute(() -> {// Lambda 表达式的运用
try {
semaphore.acquire();// 获取一个许可,所以可运行线程数量为20/1=20
test(threadnum);
semaphore.release();// 释放一个许可
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} });
}
threadPool.shutdown();
System.out.println("finish");
} public static void test(int threadnum) throws InterruptedException {
Thread.sleep(1000);// 模拟请求的耗时操作
System.out.println("threadnum:" + threadnum);
Thread.sleep(1000);// 模拟请求的耗时操作
}
}

执行 acquire 方法阻塞,直到有一个许可证可以获得然后拿走一个许可证;每个 release 方法增加一个许可证,这可能会释放一个阻塞的 acquire 方法。然而,其实并没有实际的许可证这个对象,Semaphore 只是维持了一个可获得许可证的数量。 Semaphore 经常用于限制获取某种资源的线程数量。

当然一次也可以一次拿取和释放多个许可,不过一般没有必要这样做:

          semaphore.acquire(5);// 获取5个许可,所以可运行线程数量为20/5=4
test(threadnum);
semaphore.release(5);// 获取5个许可,所以可运行线程数量为20/5=4

除了 acquire方法之外,另一个比较常用的与之对应的方法是tryAcquire方法,该方法如果获取不到许可就立即返回 false。

Semaphore 有两种模式,公平模式和非公平模式。

  • 公平模式: 调用 acquire 的顺序就是获取许可证的顺序,遵循 FIFO;
  • 非公平模式: 抢占式的。

Semaphore 对应的两个构造方法如下:

   public Semaphore(int permits) {
sync = new NonfairSync(permits);
} public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

这两个构造方法,都必须提供许可的数量,第二个构造方法可以指定是公平模式还是非公平模式,默认非公平模式。

由于篇幅问题,如果对 Semaphore 源码感兴趣的朋友可以看下面这篇文章:

4 CountDownLatch (倒计时器)

CountDownLatch 是一个同步工具类,它允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行。在 Java 并发中,countdownlatch 的概念是一个常见的面试题,所以一定要确保你很好的理解了它。

4.1 CountDownLatch 的三种典型用法

① 某一线程在开始运行前等待 n 个线程执行完毕。将 CountDownLatch 的计数器初始化为 n :new CountDownLatch(n),每当一个任务线程执行完毕,就将计数器减 1 countdownlatch.countDown(),当计数器的值变为 0 时,在CountDownLatch上 await() 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。

② 实现多个线程开始执行任务的最大并行性。注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 CountDownLatch 对象,将其计数器初始化为 1 :new CountDownLatch(1),多个线程在开始执行任务前首先 coundownlatch.await(),当主线程调用 countDown() 时,计数器变为 0,多个线程同时被唤醒。

③ 死锁检测:一个非常方便的使用场景是,你可以使用 n 个线程访问共享资源,在每次测试阶段的线程数目是不同的,并尝试产生死锁。

4.2 CountDownLatch 的使用示例

/**
*
* @author SnailClimb
* @date 2018年10月1日
* @Description: CountDownLatch 使用方法示例
*/
public class CountDownLatchExample1 {
// 请求的数量
private static final int threadCount = 550; public static void main(String[] args) throws InterruptedException {
// 创建一个具有固定线程数量的线程池对象(如果这里线程池的线程数量给太少的话你会发现执行的很慢)
ExecutorService threadPool = Executors.newFixedThreadPool(300);
final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
final int threadnum = i;
threadPool.execute(() -> {// Lambda 表达式的运用
try {
test(threadnum);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} finally {
countDownLatch.countDown();// 表示一个请求已经被完成
} });
}
countDownLatch.await();
threadPool.shutdown();
System.out.println("finish");
} public static void test(int threadnum) throws InterruptedException {
Thread.sleep(1000);// 模拟请求的耗时操作
System.out.println("threadnum:" + threadnum);
Thread.sleep(1000);// 模拟请求的耗时操作
}
}

上面的代码中,我们定义了请求的数量为 550,当这 550 个请求被处理完成之后,才会执行System.out.println("finish");

与 CountDownLatch 的第一次交互是主线程等待其他线程。主线程必须在启动其他线程后立即调用 CountDownLatch.await()方法。这样主线程的操作就会在这个方法上阻塞,直到其他线程完成各自的任务。

其他 N 个线程必须引用闭锁对象,因为他们需要通知 CountDownLatch 对象,他们已经完成了各自的任务。这种通知机制是通过 CountDownLatch.countDown()方法来完成的;每调用一次这个方法,在构造函数中初始化的 count 值就减 1。所以当 N 个线程都调 用了这个方法,count 的值等于 0,然后主线程就能通过 await()方法,恢复执行自己的任务。

4.3 CountDownLatch 的不足

CountDownLatch 是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 CountDownLatch 使用完毕后,它不能再次被使用。

4.4 CountDownLatch 相常见面试题:

解释一下 CountDownLatch 概念?

CountDownLatch 和 CyclicBarrier 的不同之处?

给出一些 CountDownLatch 使用的例子?

CountDownLatch 类中主要的方法?

5 CyclicBarrier(循环栅栏)

CyclicBarrier 和 CountDownLatch 非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch 更加复杂和强大。主要应用场景和 CountDownLatch 类似。

CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。CyclicBarrier 默认的构造方法是 CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用await方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。

再来看一下它的构造函数:

public CyclicBarrier(int parties) {
this(parties, null);
} public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}

其中,parties 就代表了有拦截的线程的数量,当拦截的线程数量达到这个值的时候就打开栅栏,让所有线程通过。

5.1 CyclicBarrier 的应用场景

CyclicBarrier 可以用于多线程计算数据,最后合并计算结果的应用场景。比如我们用一个 Excel 保存了用户所有银行流水,每个 Sheet 保存一个帐户近一年的每笔银行流水,现在需要统计用户的日均银行流水,先用多线程处理每个 sheet 里的银行流水,都执行完之后,得到每个 sheet 的日均银行流水,最后,再用 barrierAction 用这些线程的计算结果,计算出整个 Excel 的日均银行流水。

5.2 CyclicBarrier 的使用示例

示例 1:

/**
*
* @author Snailclimb
* @date 2018年10月1日
* @Description: 测试 CyclicBarrier 类中带参数的 await() 方法
*/
public class CyclicBarrierExample2 {
// 请求的数量
private static final int threadCount = 550;
// 需要同步的线程数量
private static final CyclicBarrier cyclicBarrier = new CyclicBarrier(5); public static void main(String[] args) throws InterruptedException {
// 创建线程池
ExecutorService threadPool = Executors.newFixedThreadPool(10); for (int i = 0; i < threadCount; i++) {
final int threadNum = i;
Thread.sleep(1000);
threadPool.execute(() -> {
try {
test(threadNum);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (BrokenBarrierException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
});
}
threadPool.shutdown();
} public static void test(int threadnum) throws InterruptedException, BrokenBarrierException {
System.out.println("threadnum:" + threadnum + "is ready");
try {
/**等待60秒,保证子线程完全执行结束*/
cyclicBarrier.await(60, TimeUnit.SECONDS);
} catch (Exception e) {
System.out.println("-----CyclicBarrierException------");
}
System.out.println("threadnum:" + threadnum + "is finish");
} }

运行结果,如下:

threadnum:0is ready
threadnum:1is ready
threadnum:2is ready
threadnum:3is ready
threadnum:4is ready
threadnum:4is finish
threadnum:0is finish
threadnum:1is finish
threadnum:2is finish
threadnum:3is finish
threadnum:5is ready
threadnum:6is ready
threadnum:7is ready
threadnum:8is ready
threadnum:9is ready
threadnum:9is finish
threadnum:5is finish
threadnum:8is finish
threadnum:7is finish
threadnum:6is finish
......

可以看到当线程数量也就是请求数量达到我们定义的 5 个的时候, await方法之后的方法才被执行。

另外,CyclicBarrier 还提供一个更高级的构造函数CyclicBarrier(int parties, Runnable barrierAction),用于在线程到达屏障时,优先执行barrierAction,方便处理更复杂的业务场景。示例代码如下:

/**
*
* @author SnailClimb
* @date 2018年10月1日
* @Description: 新建 CyclicBarrier 的时候指定一个 Runnable
*/
public class CyclicBarrierExample3 {
// 请求的数量
private static final int threadCount = 550;
// 需要同步的线程数量
private static final CyclicBarrier cyclicBarrier = new CyclicBarrier(5, () -> {
System.out.println("------当线程数达到之后,优先执行------");
}); public static void main(String[] args) throws InterruptedException {
// 创建线程池
ExecutorService threadPool = Executors.newFixedThreadPool(10); for (int i = 0; i < threadCount; i++) {
final int threadNum = i;
Thread.sleep(1000);
threadPool.execute(() -> {
try {
test(threadNum);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (BrokenBarrierException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
});
}
threadPool.shutdown();
} public static void test(int threadnum) throws InterruptedException, BrokenBarrierException {
System.out.println("threadnum:" + threadnum + "is ready");
cyclicBarrier.await();
System.out.println("threadnum:" + threadnum + "is finish");
} }

运行结果,如下:

threadnum:0is ready
threadnum:1is ready
threadnum:2is ready
threadnum:3is ready
threadnum:4is ready
------当线程数达到之后,优先执行------
threadnum:4is finish
threadnum:0is finish
threadnum:2is finish
threadnum:1is finish
threadnum:3is finish
threadnum:5is ready
threadnum:6is ready
threadnum:7is ready
threadnum:8is ready
threadnum:9is ready
------当线程数达到之后,优先执行------
threadnum:9is finish
threadnum:5is finish
threadnum:6is finish
threadnum:8is finish
threadnum:7is finish
......

5.3 CyclicBarrier源码分析

当调用 CyclicBarrier 对象调用 await() 方法时,实际上调用的是dowait(false, 0L)方法。 await() 方法就像树立起一个栅栏的行为一样,将线程挡住了,当拦住的线程数量达到 parties 的值时,栅栏才会打开,线程才得以通过执行。

    public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}

dowait(false, 0L)

    // 当线程数量或者请求数量达到 count 时 await 之后的方法才会被执行。上面的示例中 count 的值就为 5。
private int count;
/**
* Main barrier code, covering the various policies.
*/
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
// 锁住
lock.lock();
try {
final Generation g = generation; if (g.broken)
throw new BrokenBarrierException(); // 如果线程中断了,抛出异常
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// cout减1
int index = --count;
// 当 count 数量减为 0 之后说明最后一个线程已经到达栅栏了,也就是达到了可以执行await 方法之后的条件
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 将 count 重置为 parties 属性的初始化值
// 唤醒之前等待的线程
// 下一波执行开始
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
} // loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
} if (g.broken)
throw new BrokenBarrierException(); if (g != generation)
return index; if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}

总结:CyclicBarrier 内部通过一个 count 变量作为计数器,cout 的初始值为 parties 属性的初始化值,每当一个线程到了栅栏这里了,那么就将计数器减一。如果 count 值为 0 了,表示这是这一代最后一个线程到达栅栏,就尝试执行我们构造方法中输入的任务。

5.4 CyclicBarrier 和 CountDownLatch 的区别

下面这个是国外一个大佬的回答:

CountDownLatch 是计数器,只能使用一次,而 CyclicBarrier 的计数器提供 reset 功能,可以多次使用。但是我不那么认为它们之间的区别仅仅就是这么简单的一点。我们来从 jdk 作者设计的目的来看,javadoc 是这么描述它们的:

对于 CountDownLatch 来说,重点是“一个线程(多个线程)等待”,而其他的 N 个线程在完成“某件事情”之后,可以终止,也可以等待。而对于 CyclicBarrier,重点是多个线程,在任意一个线程没有完成,所有的线程都必须等待。

CountDownLatch 是计数器,线程完成一个记录一个,只不过计数不是递增而是递减,而 CyclicBarrier 更像是一个阀门,需要所有线程都到达,阀门才能打开,然后继续执行。

6 ReentrantLock 和 ReentrantReadWriteLock

ReentrantLock 和 synchronized 的区别在上面已经讲过了这里就不多做讲解。另外,需要注意的是:读写锁 ReentrantReadWriteLock 可以保证多个线程可以同时读,所以在读操作远大于写操作的时候,读写锁就非常有用了。

参考

05-11 22:21
查看更多