首先说一下题意,Q个区域,M个任务,每个区域任务可能有多个,然后给你个到各地所需时间的矩阵,每个任务都有开始和持续时间,问最少需要多少工人? 每个工人只能同时执行一个任务。

通过题意,我的瞬间反应就是先把点拆开再说,因为每个区域可能有多个任务,所以把每个任务都当做一点处理,之后就需要考虑一件事情,一个工人在Qi区域做完之后是不是应该去一个离他最近且正好有任务的地方Qj,那么他从Qi到Qj是不是应该走最近的路线? 下一步就出来了,求出所有区域之间的最短距离,用floyd一键搞定。然后就可以建图(有向的)了,把能衔接起来的任务统统连上,按照上一个任务的开始时间+持续时间+到下一点的时间<=下一点的开始时间来连边(不用换区域的到下一点的时间为零),那么此时的问题就变成了多少个工人能把图走完?  即最小路径覆盖,直接匈牙利算法搞定。

好了上代码

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#define maxn 500
#define inf 0xfffffff
using namespace std; struct edge
{
int pos,realpos,start,need;
}rela[maxn];
vector<int> q[maxn];
int mize[maxn][maxn],point[maxn];
int vis[maxn],link[maxn];
int n,m,sum;
void init()
{
for(int i=;i<=maxn;i++)
q[i].clear();
memset(rela,,sizeof(rela));
memset(mize,,sizeof(mize));
memset(point,,sizeof(point));
for(int a=;a<=n;a++)
for(int b=;b<=n;b++)
{
scanf("%d",&mize[a][b]);
if(mize[a][b]==-) mize[a][b]=inf;
} for(int c=;c<=m;c++)
{
scanf("%d %d %d",&rela[c].pos,&rela[c].start,&rela[c].need);
int p=;
for(int d=;d<c;d++)
{
if(rela[d].pos==rela[c].pos) p++;
}
rela[c].realpos=rela[c].pos+n*p;
point[rela[c].realpos]=;
if(sum<rela[c].realpos) sum=rela[c].realpos;
}
}
void floyd()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
for(int k=;k<=n;k++)
{
mize[j][k]=mize[j][k]<mize[i][k]+mize[j][i]?mize[j][k]:mize[i][k]+mize[j][i];
}
}
} }
void set_map()
{
for(int i=;i<=m;i++)
{
int realpos=rela[i].realpos,pos=rela[i].pos,time=rela[i].need+rela[i].start;
for(int j=;j<=m;j++)
{
if(j==i) continue;
int a=rela[j].realpos,b=rela[j].pos,t=rela[j].start;
// if(mize[pos][b]==-1||mize[b][pos]==-1) continue;
if(time+mize[pos][b]<=t) // 矩阵式对称的 怎么写都无所谓
{
q[realpos].push_back(a);
// q[a].push_back(realpos);
}
}
}
/* for(int i=1;i<=8;i++)
{
if(q[i].size()==0) continue;
cout<<i<<": "<<endl;
for(int j=0;j<q[i].size();j++)
{
cout<<q[i][j]<<" ";
}
cout<<endl;
}*/
}
int dfs(int x)
{
for(int i=;i<q[x].size();i++)
{
int y=q[x][i];
if(!vis[y])
{
vis[y] = true;
if(link[y]== -||dfs(link[y]))
{
link[y] = x;
return true;
}
}
}
return false;
}
void solve()
{
int s=;
memset(link,-,sizeof(link));
for(int i=;i<=sum;i++)
{
if(point[i]==) continue;
memset(vis,,sizeof(vis));
if(dfs(i)) s++;
}
printf("%d\n",m-s);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==) break;
sum=;
init();
floyd();
set_map();
solve();
}
return ;
}
05-22 12:03