k-means:是无监督的分类算法
k代表要分的类数,即要将数据聚为k类; means是均值,代表着聚类中心的迭代策略.
k-means算法思想:
(1)随机选取k个聚类中心(一般在样本集中选取,也可以自己随机选取);
(2)计算每个样本与k个聚类中心的距离,并将样本归到距离最小的那个类中;
(3)更新中心,计算属于k类的样本的均值作为新的中心。
(4)反复迭代(2)(3),直到聚类中心不发生变化,后者中心位置误差在阈值范围内,或者达到一定的迭代次数。
python实现:
k-means简单小样例:
import numpy as np data = np.random.randint(1,10,(30,2))
#k=4
k=4
#central
np.random.shuffle(data)
cent = data[0:k,:]
#distance
distance = np.zeros((data.shape[0],k))
last_near = np.zeros(data.shape[0])
n=0
while True:
n = n+1
print(n)
for i in range(data.shape[0]):
for j in range(cent.shape[0]):
dist = np.sqrt(np.sum((data[i]-cent[j])**2))
distance[i,j] = dist
nearst = np.argmin(distance,axis = 1)
if (last_near == nearst).all():
#if n<1000:
break
#update central
for ele_cen in range(k):
cent[ele_cen] = np.mean(data[nearst == ele_cen],axis=0)
last_near = nearst
print(cent)
下面样例是为了适应yolov3选取anchorbox的度量需求:
import numpy as np def iou(box, clusters):
"""
Calculates the Intersection over Union (IoU) between a box and k clusters.
:param box: tuple or array, shifted to the origin (i. e. width and height)
:param clusters: numpy array of shape (k, 2) where k is the number of clusters
:return: numpy array of shape (k, 0) where k is the number of clusters
"""
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
raise ValueError("Box has no area")
intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = intersection / (box_area + cluster_area - intersection)
return iou_ def kmeans(boxes, k, dist=np.median):
"""
Calculates k-means clustering with the Intersection over Union (IoU) metric.
:param boxes: numpy array of shape (r, 2), where r is the number of rows
:param k: number of clusters
:param dist: distance function
:return: numpy array of shape (k, 2)
"""
rows = boxes.shape[0] distances = np.empty((rows, k)) #初始化距离矩阵,rows代表样本数量,k代表聚类数量,用于存放每个样本对应每个聚类中心的距离
last_clusters = np.zeros((rows,))#记录上一次样本所属的类型 np.random.seed() # the Forgy method will fail if the whole array contains the same rows
clusters = boxes[np.random.choice(rows, k, replace=False)]#从样本中随机选取聚类中心 while True:
for row in range(rows):
distances[row] = 1 - iou(boxes[row], clusters) #这里是距离计算公式,这里是为了适应yolov3选取anchorbox的度量需求
nearest_clusters = np.argmin(distances, axis=1) #找到距离最小的类
if (last_clusters == nearest_clusters).all(): #判断是否满足终止条件
break
for cluster in range(k): #更新聚类中心
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0) #将某一类的均值更新为聚类中心
last_clusters = nearest_clusters
return clusters 希望可以为正在疑惑的你提供一些思路!