Description

为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。
现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。
现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。

Input

输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。

Output

输出一行包含 1 个整数,表示所求的方案模 p 的结果。

Sample Input

3 10000

Sample Output

9

HINT

2≤n≤500

0<p≤1000000000
 
题解:
两人拥有的寿司美味度的质因子数不能有重复,对于小于√500的质因子将其在G手中、在W手中、不在两人手中压缩成3进制状态j,用dp[j]储存方案数。
先预处理好美味度为小于√500的质数的寿司归属,在枚举其他寿司插入。
插入一个大于√500的质数寿司P时,同时考虑其倍数。新开一个数组dp2[0~2,j]表示该质因子不在二人手中、在G手中、在W手中时,状态为j的方案数
将P的倍数寿司插入,假设其为KP,通过三个数组转移。
注意转移时该质因子归属、小于√500质因子归属的变化(若K的某个质因子p已在对方手中,则不可拥有;若两人都不拥有,则可以拥有这个寿司,并更新状态;若p质因子已在自己手中,则可以拥有这个寿司)
转移方向:0——>1、2;   1——>1;   2——>2
用所有P的倍数插入并转移后,将dp2[1~2]数组转到dp数组中。
插入质因子都在√500以内的合数寿司时,用类似方法在DP数组中转移。
最后统计答案。
 
代码:
 uses math;
const
zs:array[..]of longint=(,,,,,,,);
var
i,ii,j,jj,k,l,fl,n:longint;
a:array[..]of int64;
b:array[..]of int64;
dp:array[..]of int64;
dp2:array[..,..]of int64;
ans,tj,mo:int64;
begin
readln(n,mo);
b[]:=; for i:= to do b[i]:=b[i-]*;
for i:= to b[]- do dp[i]:=;
for i:= to n do
if a[i]= then
begin
j:=i*;
while j<=n do
begin
if i> then a[j]:= else a[j]:=max(a[j],);
j:=j+i;
end;
if i> then
begin
for j:= to b[]- do
begin
dp2[,j]:=dp[j]; dp2[,j]:=; dp2[,j]:=;
end;
ii:=i; k:=;
while ii<=n do
begin
for jj:= to do
for j:=b[]- downto do
if dp2[jj,j]> then
begin
tj:=j; fl:=;
for l:= to do
if k mod zs[l]= then
begin
if (tj div b[l-])mod =-jj then
begin fl:=; break; end else
tj:=tj+(jj-(tj div b[l-])mod )*b[l-];
end;
if fl= then dp2[jj,tj]:=(dp2[jj,tj]+dp2[jj,j])mod mo;
end;
for j:=b[]- downto do
begin
for jj:= to do
begin
tj:=j; fl:=;
for l:= to do
if k mod zs[l]= then
begin
if (tj div b[l-])mod =-jj then
begin fl:=; break; end else
tj:=tj+(jj-(tj div b[l-])mod )*b[l-];
end;
if fl= then dp2[jj,tj]:=(dp2[jj,tj]+dp2[,j])mod mo;
end;
end;
ii:=ii+i; inc(k);
end;
for j:= to b[]- do dp[j]:=(dp[j]+dp2[,j]+dp2[,j])mod mo;
end;
end else
if a[i]= then
begin
for j:=b[]- downto do
begin
for jj:= to do
begin
tj:=j; fl:=;
for l:= to do
if i mod zs[l]= then
begin
if (tj div b[l-])mod =-jj then
begin fl:=; break; end else
tj:=tj+(jj-(tj div b[l-])mod )*b[l-];
end;
if fl= then dp[tj]:=(dp[tj]+dp[j])mod mo;
end;
end;
end;
for i:= to b[]- do
begin
fl:=;
for l:= to do
if(zs[l]>n)and((i div b[l-])mod <>)then
begin fl:=; break; end;
if fl= then ans:=(ans+dp[i])mod mo;
end;
writeln(ans);
end.
05-11 16:04