Transformation
Time Limit: 15000/8000 MS (Java/Others) Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 7144 Accepted Submission(s): 1811
Problem Description
Yuanfang is puzzled with the question below:
There are n integers, a, a, …, a. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between a and a inclusive. In other words, do transformation a<---a+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between a and a inclusive. In other words, do transformation a<---a×c, k = x,x+1,…,y.
Operation 3: Change the numbers between a and a to c, inclusive. In other words, do transformation a<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between a and a inclusive. In other words, get the result of a+a+…+a .
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
There are n integers, a, a, …, a. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between a and a inclusive. In other words, do transformation a<---a+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between a and a inclusive. In other words, do transformation a<---a×c, k = x,x+1,…,y.
Operation 3: Change the numbers between a and a to c, inclusive. In other words, do transformation a<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between a and a inclusive. In other words, get the result of a+a+…+a .
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
Sample Output
307
7489
7489
这题是好题
太太太恶心了
简直爆炸 ,这题我写了N次
取模取模
最后的query也要取模
找BUG找了好久找不到
这题最傻逼的做法是用3个lazy 和 3 个sum
但是这里对于不同的lazy优先级不同
而且还有取模操作,那样写下来及其的繁琐
我参考大佬博客 发现这题最优化的写法应该是
开一个线段树 维护区间里面相同的值
这样的话无论C多少都好求
for (int i = 1 ; i <= c ; i++)
ans = (ans * tree[rt].eq) % mod;
return (ans * ((tree[rt].r - tree[rt].l + 1) % mod) % mod) % mod;
如果C是10用多个lazy维护代码量就直接爆炸了
这样的方法还有一个很好的优化
就是pushdown操作一直递归下去,直到到达底层
这样的话就有效的解决繁琐的优先级处理问题
这样处理优先级问题就很容易了
我菜爆了,用线段树维护区间相同的值 ,太强了
附送一个fuck函数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
typedef long long LL;
#define fuck(x) cout<<"["<<x<<"]";
#define rtl rt<<1
#define rtr rt<<1|1
const int maxn = 1e5 + ;
const int mod = 1e4 + ;
const int INF = 2e9 + ;
int n, m;
struct node {
int l, r, eq, add, mul;
int mid() {
return (l + r) >> ;
}
} tree[maxn << ];
void build(int l, int r, int rt) {
tree[rt].l = l, tree[rt].r = r;
tree[rt].add = , tree[rt].mul = , tree[rt].eq = -;
if (l == r) {
tree[rt].eq = ;
return ;
}
int m = (l + r) >> ;
build(l, m, rtl);
build(m + , r, rtr);
}
void pushdown(int rt) {
if (tree[rt].l == tree[rt].r) return ;
if (tree[rt].eq != -) {
tree[rtl].eq = tree[rtr].eq = tree[rt].eq;
tree[rtl].add = tree[rtr].add = ;
tree[rtl].mul = tree[rtr].mul = ;
tree[rt].eq = -;
return ;
}
if (tree[rt].mul != ) {
if (tree[rtl].eq != -) tree[rtl].eq = (tree[rtl].eq * tree[rt].mul) % mod;
else {
pushdown(rtl);
tree[rtl].mul = (tree[rtl].mul * tree[rt].mul) % mod;
}
if (tree[rtr].eq != -) tree[rtr].eq = (tree[rtr].eq * tree[rt].mul) % mod;
else {
pushdown(rtr);
tree[rtr].mul = (tree[rtr].mul * tree[rt].mul) % mod;
}
tree[rt].mul = ;
}
if (tree[rt].add) {
if (tree[rtl].eq != -) tree[rtl].eq = (tree[rtl].eq + tree[rt].add) % mod;
else {
pushdown(rtl);
tree[rtl].add = (tree[rtl].add + tree[rt].add) % mod;
}
if (tree[rtr].eq != -) tree[rtr].eq = (tree[rtr].eq + tree[rt].add) % mod;
else {
pushdown(rtr);
tree[rtr].add = (tree[rtr].add + tree[rt].add) % mod;
}
tree[rt].add = ;
}
} void update(int L, int R, int rt, int op, int c) {
if (L <= tree[rt].l && tree[rt].r <= R ) {
if (op == ) {
tree[rt].eq = c;
tree[rt].mul = ;
tree[rt].add = ;
return ;
}
if (tree[rt].eq != -) {
if (op == ) tree[rt].eq = (tree[rt].eq + c) % mod;
else tree[rt].eq = (tree[rt].eq * c) % mod;
} else {
pushdown(rt);
if (op == ) tree[rt].add = (tree[rt].add + c) % mod;
else tree[rt].mul = (tree[rt].mul * c) % mod;
}
return ;
}
pushdown(rt);
int m = tree[rt].mid();
if (L <= m) update(L, R, rtl, op, c);
if (R > m) update(L, R, rtr, op, c);
} int query(int L, int R, int rt, int c) {
if (L <= tree[rt].l && tree[rt].r <= R && tree[rt].eq != -) {
int ans = ;
for (int i = ; i <= c ; i++)
ans = (ans * tree[rt].eq) % mod;
return (ans * ((tree[rt].r - tree[rt].l + ) % mod) % mod) % mod;
}
pushdown(rt);
int m = tree[rt].mid();
if (R <= m) return query(L, R, rtl, c);
else if (L > m) return query(L, R, rtr, c);
else return query(L, m, rtl, c) + query(m + , R, rtr, c);
}
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if (n == && m == ) break;
build(, n, );
while(m--) {
int op, x, y, c;
scanf("%d%d%d%d", &op, &x, &y, &c);
if (op == ) printf("%d\n", query(x, y, , c)%mod);
else update(x, y, , op, c);
}
}
return ;
}