ML3.1 介绍e1071包实施朴素贝叶斯分类的函数,本例使用klaR包中的NaiveBayes函数,因为该函数较之前者增加了两个功能,一个是可以输入先验概率,另一个是在正态分布基础上增加了核平滑密度函数。为了避免过度拟合,在训练时还要将数据分割进行多重检验,所以我们还使用了caret包的一些函数进行配合。

caret::train

语法: train(form, data, ..., weights, subset, na.action = na.fail, contrasts = NULL)

  • 安装程序包

    install.packages("caret")
    install.packages("mlbench")
    install.package("klaR")
  • 创建训练集和测试集
    library(lattice)
    library(ggplot2)
    library(caret)
    library(mlbench)
    library(MASS)
    library(klaR) # 使用朴素贝叶斯建模,这里使用了三次10折交叉检验得到30个结果
    fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 3,returnResamp = "all")
    model1 <- train(Species~., data = iris.train,method='nb',trControl = fitControl)
  • 加载包 使用朴素贝叶斯建模
    fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 3,returnResamp = "all")
    model1 <- train(Species~., data = iris.train,method='nb',trControl = fitControl)
  • 返回测试数据的混淆矩阵
    > pred3 <- predict(model1, iris.test, type="raw")
    > table(pred3,iris.test$Species) pred3 setosa versicolor virginica
    setosa 10 0 0
    versicolor 0 18 2
    virginica 0 0 20
05-08 14:56