3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 30  Solved: 17
[Submit][Status]

Description

    约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K(O≤K<N)只牝牛.
    请计算一共有多少种排队的方法.所有牡牛可以看成是相同的,所有牝牛也一样.

Input

    一行,输入两个整数N和K.

Output

 
    一个整数,表示排队的方法数.

Sample Input

4 2

Sample Output

6
样例说明
6种方法分别是:牝牝牝牝,牡牝牝牝,牝牡牝牝,牝牝牡牝,牝牝牝牡,牡牝牝牡

HINT

 

Source

题解:
问题可以转化为 在n个数中去若干个数,使这些数两两的差都>k
刚开始想的是排列组合:
枚举取m个,
设取出的m个数为 a[1] a[2] a[3] a[...] a[m]
构造数列  a[1] a[2]-k a[3]-2*k  a[...]-...k  a[m]-(m-1)*k
则该数列 严格递增 且该数列的个数为 c(a[m]-(m-1)*k,m)
因为每不同取法从小到大排序之后还原上去可以得到不同的 a数组
然后就可以各种逆元+排列组合乱搞了
复杂度 n*logn
 
后来发现直接DP(递推)更简单?
设 f[i]表示取的最后一个数是i的方案数
则 f[i]=siama(f[j]) i-j>k
so easy!
看来有时候数学方法不一定比信息学方法好233333
代码:
 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 100000+5
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 5000011
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,k,f[maxn];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();k=read();
f[]=;
int sum=,ans=;
for1(i,n)
{
if(i>k+)sum=(sum+f[i-k-])%mod;
f[i]=sum;
ans=(ans+f[i])%mod;
}
printf("%d\n",ans);
return ;
}
05-04 02:57