1.初步认识跳跃表
图中所示,跳跃表与普通链表的区别在于,每一个节点可以有多个后置节点,图中是一个4层的跳跃表
第0层: head->3->6->7->9->12->17->19->21->25->26->tail
第1层: head->6->9->17->25->tail
第2层: head->6->25->tail
第3层: head->6->tail
传统意义的单链表是一个线性结构,向有序的链表中插入一个节点需要O(n)的时间,查找操作需要O(n)的时间。如果我们使用图中所示的跳跃表,就可以减少查找所需时间为O(n/2),因为我们可以先通过每个节点的最上面的指针先进行查找,这样子就能跳过一半的节点。比如我们想查找19,首先和6比较,大于6之后,在和9进行比较,然后在和12进行比较......最后比较到21的时候,发现21大于19,说明查找的点在17和21之间,从这个过程中,我们可以看出,查找的时候跳过了3、7、12等点,因此查找的复杂度为O(n/2)。
2.redis中实现的skiplist
结构体 zskiplist
typedef struct zskiplist { // 表头节点和表尾节点
struct zskiplistNode *header, *tail; // 表中节点的数量
unsigned long length; // 表中层数最大的节点的层数
int level; } zskiplist;
// 节点
typedef struct zskiplistNode { // 成员对象
robj *obj; // 分值
double score; // 后退指针
struct zskiplistNode *backward; // 前一个节点 // 层
struct zskiplistLevel { // 前进指针
struct zskiplistNode *forward; // 下一个节点 // 跨度
unsigned int span; // 当前节点在第i层到下一个节点forward需要跨过的节点数 } level[]; } zskiplistNode;
redis实现的跳跃表特点:
1.zskiplistNode中保存着前置节点backward
2.跳跃表的层数最大值32,每次插入新节点都会生成一个随机的level(1~32)作为新节点的层数
3.删除节点可能会引起跳跃表层数的下降,插入节点可能会引起跳跃表层数上升
4.查找节点的时间复杂度平均为 O(logn)
5.插入和删除的成本都比较低,拥有平衡二叉树的查找性能
创建一条skiplist
// 创建一条长度为0的skiplist
zskiplist *zslCreate(void) {
int j;
zskiplist *zsl; // 分配空间
zsl = zmalloc(sizeof(*zsl)); zsl->level = 1; // 起始层数
zsl->length = 0; // 跳跃表长度 // 初始化表头节点
// T = O(1)
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
zsl->header->level[j].forward = NULL;
zsl->header->level[j].span = 0;
}
zsl->header->backward = NULL; // 设置表尾
zsl->tail = NULL; return zsl;
} // 创建新节点
zskiplistNode *zslCreateNode(int level, double score, robj *obj) { // 分配空间
zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel)); // 设置属性
zn->score = score;
zn->obj = obj; return zn;
}
插入一个节点
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned int rank[ZSKIPLIST_MAXLEVEL];
int i, level; redisAssert(!isnan(score)); // 保证score合法性 // level越高每一次forward跨越的节点越多,先大间距的查找,随着level的减小,查找范围逐渐缩小
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) { // rank[i]用来记录当前节点x与header的距离,随着x的移动,rank[i]实时更新
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1]; // 沿着前进指针遍历跳跃表
// T_wrost = O(N^2), T_avg = O(N log N)
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
// 比对分值
(x->level[i].forward->score == score &&
// 比对成员, T = O(N)
compareStringObjects(x->level[i].forward->obj,obj) < 0))) { // 记录沿途跨越了多少个节点
rank[i] += x->level[i].span; // 移动至下一指针
x = x->level[i].forward;
}
// 第i层第一个大于 score的节点,将作为插入节点obj在第i层连接的的前一个节点
update[i] = x;
} /* we assume the key is not already inside, since we allow duplicated
* scores, and the re-insertion of score and redis object should never
* happen since the caller of zslInsert() should test in the hash table
* if the element is already inside or not.
*
* zslInsert() 的调用者会确保同分值且同成员的元素不会出现,
* 所以这里不需要进一步进行检查,可以直接创建新元素。
*/ // 获取一个随机值作为新节点的层数
// T = O(N)
level = zslRandomLevel(); // 如果新节点的层数比表中其他节点的层数都要大
// 那么初始化表头节点中未使用的层,并将它们记录到 update 数组中
// 将来也指向新节点
if (level > zsl->level) { // 初始化未使用层
// T = O(1)
for (i = zsl->level; i < level; i++) {
rank[i] = 0;
update[i] = zsl->header;
update[i]->level[i].span = zsl->length;
} // 更新表中节点最大层数
zsl->level = level;
} // 创建新节点
x = zslCreateNode(level,score,obj); // 将前面记录的指针指向新节点,并做相应的设置
// update[i]保存着第i层x的前置节点,rank[i]保存的是第i层x的前置节点离header的距离,rank[0]+1即是x离header的距离
for (i = 0; i < level; i++) { // 设置新节点的 forward 指针
x->level[i].forward = update[i]->level[i].forward; // 将沿途记录的各个节点的 forward 指针指向新节点
update[i]->level[i].forward = x; /* update span covered by update[i] as x is inserted here */
// 用x前置节点到x后置节点的跨度减去x到前置节点的距离等于x到后置节点的跨度
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]); // 更新新节点插入之后,沿途节点的 span 值
// 其中的 +1 计算的是新节点
update[i]->level[i].span = (rank[0] - rank[i]) + 1; // (rank[0] - rank[i]) 为x距离update[i]的距离
} /* increment span for untouched levels */
// 未接触的节点的 span 值也需要增一,因为这些节点到后置节点中间插入了一个节点x
// T = O(1)
for (i = level; i < zsl->level; i++) {
update[i]->level[i].span++;
} // 设置新节点的后退指针
x->backward = (update[0] == zsl->header) ? NULL : update[0];
if (x->level[0].forward)
x->level[0].forward->backward = x;
else
zsl->tail = x; // x是跳跃表的尾部节点 // 跳跃表的节点计数增一
zsl->length++; return x;
}
删除一个节点
int zslDelete(zskiplist *zsl, double score, robj *obj) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i; // 遍历跳跃表,查找目标节点,并记录所有沿途节点
// T_wrost = O(N^2), T_avg = O(N log N)
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) { // 遍历跳跃表的复杂度为 T_wrost = O(N), T_avg = O(log N)
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
// 比对分值
(x->level[i].forward->score == score &&
// 比对对象,T = O(N)
compareStringObjects(x->level[i].forward->obj,obj) < 0))) // 沿着前进指针移动
x = x->level[i].forward; // 第i层上obj的前一个节点
update[i] = x;
} /* We may have multiple elements with the same score, what we need
* is to find the element with both the right score and object.
*
* 检查找到的元素 x ,只有在它的分值和对象都相同时,才将它删除。
*/
x = x->level[0].forward; // 指向目标节点
if (x && score == x->score && equalStringObjects(x->obj,obj)) { // 目标节点与obj一样
// T = O(1)
zslDeleteNode(zsl, x, update); // 已知目标节点每一层的前置节点,删除目标节点
// T = O(1)
zslFreeNode(x); // 释放目标节点内存
return 1;
} else { // 目标节点与obj不匹配
return 0; /* not found */
} return 0; /* not found */
} // update数组存储着要删除的节点x的前置节点
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
int i; // 更新所有和被删除节点 x 有关的节点的指针,解除它们之间的关系
// T = O(1)
for (i = 0; i < zsl->level; i++) {
if (update[i]->level[i].forward == x) { // update[i]是第i层在x前面的节点而且是前置节点
update[i]->level[i].span += x->level[i].span - 1; // 更新前置节点的span
update[i]->level[i].forward = x->level[i].forward; // 更新前置节点的forward
} else { // update[i]是第i层在x前面的节点,没有和x建立连接
update[i]->level[i].span -= 1; // 减去中间少的1个
}
} // 更新被删除节点 x 的前进和后退指针
if (x->level[0].forward) {
x->level[0].forward->backward = x->backward;
} else { // x是尾部节点
zsl->tail = x->backward;
} // 更新跳跃表最大层数(只在被删除节点是跳跃表中最高的节点时才执行)
// T = O(1)
while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
zsl->level--; // 跳跃表节点计数器减一
zsl->length--;
}