最近闲来无事,就估摸着自己写个“服务注册中心”来玩,当然因为是个人写的,所以一般都是简洁版本。

  代码地址在:https://gitee.com/zhxs_code/my-service-register.git

  

  由于在处理与网络数据时,为了性能,想到用AIO来实验,结果发现AIO整个思路与之前的BIO,NIO都不一样。导致出现一些深坑,在此记录一下。

  (一)  AIO写的server端与client端,只能通信一次。

    上代码:

    server端部分:

    

 public class RegisterServer {

     // 静态初始化 eventProcess
private EventProcess eventProcess=new EventProcess(); public AsynchronousServerSocketChannel serverSocketChannel=null; public AsynchronousServerSocketChannel getSocketChannel(){
return serverSocketChannel;
} RegisterServer() throws InterruptedException, ExecutionException, IOException {
start();
} public static void main(String[] args) throws InterruptedException, IOException, ExecutionException {
new RegisterServer(); } public void start() throws ExecutionException, InterruptedException, IOException {
// 创建一个对象
serverSocketChannel = AsynchronousServerSocketChannel.open();
// 绑定端口
serverSocketChannel.bind(new InetSocketAddress(RegisterServerConfig.getInstance().getPort()));
System.out.println("--------- Register Server Started ! --------- ");
System.out.println("--------- Register Server bind port : [" + RegisterServerConfig.getInstance().getPort() + "] --------------"); // 心跳检测
ServerSchedule.checkClientHeartBeat();
serverSocketChannel.accept(this,new AcceptCompletionHandler()); } }
public class AcceptCompletionHandler implements CompletionHandler<AsynchronousSocketChannel,RegisterServer> {
@Override
public void completed(AsynchronousSocketChannel socketChannel, RegisterServer attachment) {
// 处理下一次链接,类似链式调用
attachment.getSocketChannel().accept(attachment,this);
ByteBuffer buffer=ByteBuffer.allocate(1024);
socketChannel.read(buffer,buffer,new ReadCompletionHandler(socketChannel,new AnalyticalMsg()));
} @Override
public void failed(Throwable throwable, RegisterServer registerServer) {
throwable.printStackTrace();
} }
public class ReadCompletionHandler implements CompletionHandler<Integer, ByteBuffer> {

    private AsynchronousSocketChannel socketChannel;

    // 业务处理函数
private BusinessFun businessFun; ReadCompletionHandler(AsynchronousSocketChannel socketChannel) {
if (this.socketChannel == null) {
this.socketChannel = socketChannel;
}
} ReadCompletionHandler(AsynchronousSocketChannel socketChannel,BusinessFun businessFun) {
if (this.socketChannel == null) {
this.socketChannel = socketChannel;
}
if(this.businessFun==null){
this.businessFun=businessFun;
}
} @Override
public void completed(Integer result, ByteBuffer attachment) {
if(result<0){
System.err.println(" ReadCompletionHandler completed() result < 0 !!!! ");
return;
}
attachment.flip();
byte[] buffer = new byte[attachment.remaining()];
attachment.get(buffer);
String content = new String(buffer, StandardCharsets.UTF_8);
System.out.println("received : " + content);
// 处理业务
businessFun.doSomeThing(socketChannel,content);
attachment.clear();
// 处理完之后,要继续监听read,否则同一个socket只能通信一次,无法接收到之后通过socket发送的消息
// ------------- 重要 -------------------
socketChannel.read(attachment,attachment,this);
} @Override
public void failed(Throwable throwable, ByteBuffer attachment) {
try {
throwable.printStackTrace();
System.err.println(" socket cloesd : "+socketChannel.getRemoteAddress());
socketChannel.close();
} catch (IOException e) {
e.printStackTrace();
} } }

    以上就是server端的大部分核心代码。aio提供了两种处理各种操作的方式:future , handler., 拿accept操作为例:

    AsynchronousServerSocketChannel 提供了accept两种的两种api

    (填坑系列) 用aio写server与client进行通信的坑-LMLPHP

      一种返回值类型为future,另一种形参列表里传入了一个CompletionHandler。

      官方的注释其实说明了两种api的特点,我归纳一下:

        用future的方式,意思是实际什么时候触发并不清楚,要拿到操作结果,就要调用future.get( ) 方法,但是get( ) 是阻塞的,所以和我们的初衷“异步非阻塞”其实就相违背了,所以我没采用future的方式。

        handler方式其实是一个接口,将接口当做参数传入进去,实际是要自己实现该接口,然后覆写里面的complete () , faile( ) 方法的。complete方法是当底层对accpet的准备工作做完并且成功以后就会调用complete(),反之调用fail(), 那么我们可以在覆写complete()方式时实现自己的逻辑。handler是完全异步非阻塞的,不需要像future方式那样通过调用get()方式来触发。举例来说明一下,假如有个client发送了一个accpet的请求到server端,当server端接收到这个请求之后,会自动调用handler中覆写的complete和fail来实现业务逻辑。看着好像挺神奇,其实原理是底层创建了一个默认的线程池来处理这些操作。因为有另一个线程来处理,所以handler的处理方式是异步非阻塞的,因为不会阻塞当前线程。

      那么为什么client与server只能通信一次了?

      只能通信一次的场景我就不贴图了,有兴趣的同学可以百度aio写server的代码,试着运行一下就知道了。

      解决方案是在上面的 ReadCompletionHandler 中的 completed()方法中最后一句

  @Override
public void completed(Integer result, ByteBuffer attachment) {
if(result<0){
System.err.println(" ReadCompletionHandler completed() result < 0 !!!! ");
return;
}
attachment.flip();
byte[] buffer = new byte[attachment.remaining()];
attachment.get(buffer);
String content = new String(buffer, StandardCharsets.UTF_8);
System.out.println("received : " + content);
// 处理业务
businessFun.doSomeThing(socketChannel,content);
attachment.clear();
// 处理完之后,要继续监听read,否则同一个socket只能通信一次,无法接收到之后通过socket发送的消息
// ------------- 重要 -------------------
socketChannel.read(attachment,attachment,this);
}

    我的注释已经写的很清楚了,那么为什么要这么写的原因了,这个就和aio的底层实现有关。之前已经说过aio其实是创建了一个默认线程池来处理所有操作

    看源码:

AsynchronousServerSocketChannel.open()

  

 public static AsynchronousServerSocketChannel open()
throws IOException
{
return open(null);
}
 public static AsynchronousServerSocketChannel open(AsynchronousChannelGroup group)
throws IOException
{
AsynchronousChannelProvider provider = (group == null) ?
AsynchronousChannelProvider.provider() : group.provider();
return provider.openAsynchronousServerSocketChannel(group);
}
public AsynchronousServerSocketChannel openAsynchronousServerSocketChannel(AsynchronousChannelGroup var1) throws IOException {
return new UnixAsynchronousServerSocketChannelImpl(this.toPort(var1));
}
 private Port toPort(AsynchronousChannelGroup var1) throws IOException {
if (var1 == null) {
return this.defaultEventPort();
} else if (!(var1 instanceof KQueuePort)) {
throw new IllegalChannelGroupException();
} else {
return (Port)var1;
}
}
    private KQueuePort defaultEventPort() throws IOException {
if (defaultPort == null) {
Class var1 = BsdAsynchronousChannelProvider.class;
synchronized(BsdAsynchronousChannelProvider.class) {
if (defaultPort == null) {
defaultPort = (new KQueuePort(this, ThreadPool.getDefault())).start();
}
}
} return defaultPort;
}

创建一个KQueuePort对象,KQueuePort是继承的Port .  KQueuePort就是 aio中对端口抽象的一种具体实现, 并且还传入了一个默认的线程池。

final class KQueuePort extends Port {
private static final int MAX_KEVENTS_TO_POLL = 512;
private final int kqfd = KQueue.kqueue();
private boolean closed;
private final int[] sp;
private final AtomicInteger wakeupCount = new AtomicInteger();
private final long address;
private final ArrayBlockingQueue<KQueuePort.Event> queue;
private final KQueuePort.Event NEED_TO_POLL = new KQueuePort.Event((PollableChannel)null, 0);
private final KQueuePort.Event EXECUTE_TASK_OR_SHUTDOWN = new KQueuePort.Event((PollableChannel)null, 0); KQueuePort(AsynchronousChannelProvider var1, ThreadPool var2) throws IOException {
super(var1, var2);
int[] var3 = new int[2]; try {
socketpair(var3);
KQueue.keventRegister(this.kqfd, var3[0], -1, 1);
} catch (IOException var5) {
close0(this.kqfd);
throw var5;
} this.sp = var3;
this.address = KQueue.allocatePollArray(512);
this.queue = new ArrayBlockingQueue(512);
this.queue.offer(this.NEED_TO_POLL);
}

KQueuePort的构造方法 创建了一个 阻塞队列 queue, 这个队列里面存储的就是通过端口传递过来的各种事件(Event),然后会进入 start方法:

KQueuePort start() {
this.startThreads(new KQueuePort.EventHandlerTask());
return this;
}
protected final void startThreads(Runnable var1) {
int var2;
if (!this.isFixedThreadPool()) {
for(var2 = 0; var2 < internalThreadCount; ++var2) {
this.startInternalThread(var1);
this.threadCount.incrementAndGet();
}
} if (this.pool.poolSize() > 0) {
var1 = this.bindToGroup(var1); try {
for(var2 = 0; var2 < this.pool.poolSize(); ++var2) {
this.pool.executor().execute(var1);
this.threadCount.incrementAndGet();
}
} catch (RejectedExecutionException var3) {
;
}
}

上面就是判断线程池的大小,然后用线程池里的线程来处理传入的runnable,而这个runnable实际是上面生成的 EventHandlerTask ,  这个EventHandlerTask 实现了Runnable接口:

private class EventHandlerTask implements Runnable {
private EventHandlerTask() {
} private KQueuePort.Event poll() throws IOException {
try {
while(true) {
int var1 = KQueue.keventPoll(KQueuePort.this.kqfd, KQueuePort.this.address, 512);
KQueuePort.this.fdToChannelLock.readLock().lock(); try {
while(var1-- > 0) {
long var2 = KQueue.getEvent(KQueuePort.this.address, var1);
int var4 = KQueue.getDescriptor(var2);
Object var5;
if (var4 == KQueuePort.this.sp[0]) {
if (KQueuePort.this.wakeupCount.decrementAndGet() == 0) {
KQueuePort.drain1(KQueuePort.this.sp[0]);
} if (var1 <= 0) {
var5 = KQueuePort.this.EXECUTE_TASK_OR_SHUTDOWN;
return (KQueuePort.Event)var5;
} KQueuePort.this.queue.offer(KQueuePort.this.EXECUTE_TASK_OR_SHUTDOWN);
} else {
var5 = (PollableChannel)KQueuePort.this.fdToChannel.get(var4);
if (var5 != null) {
int var6 = KQueue.getFilter(var2);
short var7 = 0;
if (var6 == -1) {
var7 = Net.POLLIN;
} else if (var6 == -2) {
var7 = Net.POLLOUT;
} KQueuePort.Event var8 = new KQueuePort.Event((PollableChannel)var5, var7);
if (var1 <= 0) {
KQueuePort.Event var9 = var8;
return var9;
} KQueuePort.this.queue.offer(var8);
}
}
}
} finally {
KQueuePort.this.fdToChannelLock.readLock().unlock();
}
}
} finally {
KQueuePort.this.queue.offer(KQueuePort.this.NEED_TO_POLL);
}
} public void run() {
GroupAndInvokeCount var1 = Invoker.getGroupAndInvokeCount();
boolean var2 = var1 != null;
boolean var3 = false; int var6;
while(true) {
boolean var14 = false; try {
label151: {
var14 = true;
if (var2) {
var1.resetInvokeCount();
} KQueuePort.Event var4;
try {
var3 = false;
var4 = (KQueuePort.Event)KQueuePort.this.queue.take();
if (var4 == KQueuePort.this.NEED_TO_POLL) {
try {
var4 = this.poll();
} catch (IOException var17) {
var17.printStackTrace();
var14 = false;
break label151;
}
}
} catch (InterruptedException var18) {
continue;
} if (var4 == KQueuePort.this.EXECUTE_TASK_OR_SHUTDOWN) {
Runnable var5 = KQueuePort.this.pollTask();
if (var5 == null) {
var14 = false;
break;
} var3 = true;
var5.run();
continue;
} try {
var4.channel().onEvent(var4.events(), var2);
continue;
} catch (Error var15) {
var3 = true;
throw var15;
} catch (RuntimeException var16) {
var3 = true;
throw var16;
}
}
} finally {
if (var14) {
int var8 = KQueuePort.this.threadExit(this, var3);
if (var8 == 0 && KQueuePort.this.isShutdown()) {
KQueuePort.this.implClose();
} }
} var6 = KQueuePort.this.threadExit(this, var3);
if (var6 == 0 && KQueuePort.this.isShutdown()) {
KQueuePort.this.implClose();
} return;
} var6 = KQueuePort.this.threadExit(this, var3);
if (var6 == 0 && KQueuePort.this.isShutdown()) {
KQueuePort.this.implClose();
} }
}

  到这里,我们终于接近了 server端与client端只通信一次的真相:就是上面的run方法与poll方法。主要就是不停的从queue从获取端口各种的event,然后从通过poll方法生成各种event的task,然后上面的线程池里线程来处理各个task,而task的实际处理逻辑是先由操作系统和AIO底层完成一些准备工作,如收发包、事件分类(accept、write、read等),然后调用CompletionHandler中的completed与fail方法来处理。

  但是要注意的事,所有处理event的都是通过上面的队列queue来处理,所以,当client与server第一次通信时,queue中有我们自己定义的handler来处理task,但是每一次task处理完成之后,队列中的这个task就取出去了,下一次同样的事件触发时,是无法通过queue找到对应的handler来处理的。所以为了一直能与client通信,需要在read的handler处理完之后再一次进行read.

 // 处理完之后,要继续监听read,否则同一个socket只能通信一次,无法接收到之后通过socket发送的消息
// ------------- 重要 -------------------
socketChannel.read(attachment,attachment,this);

  注意: 本地测试的时候用aio写的client,如果开启太多线程模拟client与server通信。所有client的线程都会阻塞,具体是什么原因还确定。

  

05-26 10:10