# ====================LeNet-5_main.py===============
# pytorch+torchvision+visdom
 # -*- coding: utf-8 -*-
"""
Created on Sun May 26 22:53:52 2019 @author: jiangshan
"""
#A modified LeNet-5 [LeCun et al., 1998a] on the MNIST dataset.
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets.mnist import MNIST
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import visdom
from collections import OrderedDict class LeNet5(nn.Module):
"""
Input - 1x32x32
C1 - 6@28x28 (5x5 kernel)
relu
S2 - 6@14x14 (2x2 kernel, stride 2) Subsampling
C3 - 16@10x10 (5x5 kernel, complicated shit)
relu
S4 - 16@5x5 (2x2 kernel, stride 2) Subsampling
C5 - 120@1x1 (5x5 kernel)
F6 - 84
relu
F7 - 10 (Output)
"""
def __init__(self):
super(LeNet5, self).__init__() self.convnet = nn.Sequential(OrderedDict([
('c1', nn.Conv2d(1, 6, kernel_size=(5, 5))),
('relu1', nn.ReLU()),
('s2', nn.MaxPool2d(kernel_size=(2, 2), stride=2)),
('c3', nn.Conv2d(6, 16, kernel_size=(5, 5))),
('relu3', nn.ReLU()),
('s4', nn.MaxPool2d(kernel_size=(2, 2), stride=2)),
('c5', nn.Conv2d(16, 120, kernel_size=(5, 5))),
('relu5', nn.ReLU())
])) self.fc = nn.Sequential(OrderedDict([
('f6', nn.Linear(120, 84)),
('relu6', nn.ReLU()),
('f7', nn.Linear(84, 10)),
('sig7', nn.LogSoftmax(dim=-1))
])) def forward(self, img):
output = self.convnet(img)
output = output.view(img.size(0), -1)
output = self.fc(output)
return output viz = visdom.Visdom()
data_train = MNIST('./data/mnist',
download=True,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()]))
data_test = MNIST('./data/mnist',
train=False,
download=True,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()]))
data_train_loader = DataLoader(data_train, batch_size=256, shuffle=True, num_workers=8)
data_test_loader = DataLoader(data_test, batch_size=1024, num_workers=8) net = LeNet5()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=2e-3) cur_batch_win = None
cur_batch_win_opts = {
'title': 'Epoch Loss Trace',
'xlabel': 'Batch Number',
'ylabel': 'Loss',
'width': 1200,
'height': 600,
} def train(epoch):
global cur_batch_win
net.train()
loss_list, batch_list = [], []
for i, (images, labels) in enumerate(data_train_loader):
optimizer.zero_grad() output = net(images) loss = criterion(output, labels) loss_list.append(loss.detach().cpu().item())
batch_list.append(i+1) if i % 10 == 0:
print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i, loss.detach().cpu().item())) # Update Visualization
if viz.check_connection():
cur_batch_win = viz.line(torch.Tensor(loss_list), torch.Tensor(batch_list),
win=cur_batch_win, name='current_batch_loss',
update=(None if cur_batch_win is None else 'replace'),
opts=cur_batch_win_opts)
loss.backward()
optimizer.step() def test():
net.eval()
total_correct = 0
avg_loss = 0.0
for i, (images, labels) in enumerate(data_test_loader):
output = net(images)
avg_loss += criterion(output, labels).sum()
pred = output.detach().max(1)[1]
total_correct += pred.eq(labels.view_as(pred)).sum() avg_loss /= len(data_test)
print('Test Avg. Loss: %f, Accuracy: %f' % (avg_loss.detach().cpu().item(), float(total_correct) / len(data_test))) def train_and_test(epoch):
train(epoch)
test() def main():
for e in range(1, 16):
train_and_test(e) if __name__ == '__main__':
main()

先开启visdom 进行可视化

python -m visdom.server

运行程序

python LeNet-5_main.py

打开浏览器查看live graph

http://localhost:8097

05-15 20:50