简述python中functools.wrapper()
首先对于最简单的函数:
def a():
pass
if __name__ == '__main__':
print(a.__name__)
输出结果:
a
然后稍微复杂点:
def a(func):
def wrapper()
return func
@a
def b():
pass
if __name__ == '__main__'
print(b.__name__)
输出结果:
a
当加上functools.wrapper
时:
def a(func):
@functools.wrapper(func)
def wrapper()
return func
@a
def b():
pass
if __name__ == '__main__'
print(b.__name__)
输出结果:
b
很明显,通过调用functools.wrapper()
使得返回值发生了改变,这其实与它的函数定义有关,代码如下:
def wraps(wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
"""Decorator factory to apply update_wrapper() to a wrapper function
Returns a decorator that invokes update_wrapper() with the decorated
function as the wrapper argument and the arguments to wraps() as the
remaining arguments. Default arguments are as for update_wrapper().
This is a convenience function to simplify applying partial() to
update_wrapper().
"""
return partial(update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated)
def update_wrapper(wrapper,
wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
"""Update a wrapper function to look like the wrapped function
wrapper is the function to be updated
wrapped is the original function
assigned is a tuple naming the attributes assigned directly
from the wrapped function to the wrapper function (defaults to
functools.WRAPPER_ASSIGNMENTS)
updated is a tuple naming the attributes of the wrapper that
are updated with the corresponding attribute from the wrapped
function (defaults to functools.WRAPPER_UPDATES)
"""
for attr in assigned:
try:
value = getattr(wrapped, attr)
except AttributeError:
pass
else:
setattr(wrapper, attr, value)
for attr in updated:
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
# Issue #17482: set __wrapped__ last so we don't inadvertently copy it
# from the wrapped function when updating __dict__
wrapper.__wrapped__ = wrapped
# Return the wrapper so this can be used as a decorator via partial()
return wrapper
class partial:
"""New function with partial application of the given arguments
and keywords.
"""
__slots__ = "func", "args", "keywords", "__dict__", "__weakref__"
def __new__(cls, func, /, *args, **keywords):
if not callable(func):
raise TypeError("the first argument must be callable")
if hasattr(func, "func"):
args = func.args + args
keywords = {**func.keywords, **keywords}
func = func.func
self = super(partial, cls).__new__(cls)
self.func = func
self.args = args
self.keywords = keywords
return self
def __call__(self, /, *args, **keywords):
keywords = {**self.keywords, **keywords}
return self.func(*self.args, *args, **keywords)
@recursive_repr()
def __repr__(self):
qualname = type(self).__qualname__
args = [repr(self.func)]
args.extend(repr(x) for x in self.args)
args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items())
if type(self).__module__ == "functools":
return f"functools.{qualname}({', '.join(args)})"
return f"{qualname}({', '.join(args)})"
def __reduce__(self):
return type(self), (self.func,), (self.func, self.args,
self.keywords or None, self.__dict__ or None)
def __setstate__(self, state):
if not isinstance(state, tuple):
raise TypeError("argument to __setstate__ must be a tuple")
if len(state) != 4:
raise TypeError(f"expected 4 items in state, got {len(state)}")
func, args, kwds, namespace = state
if (not callable(func) or not isinstance(args, tuple) or
(kwds is not None and not isinstance(kwds, dict)) or
(namespace is not None and not isinstance(namespace, dict))):
raise TypeError("invalid partial state")
args = tuple(args) # just in case it's a subclass
if kwds is None:
kwds = {}
elif type(kwds) is not dict: # XXX does it need to be *exactly* dict?
kwds = dict(kwds)
if namespace is None:
namespace = {}
self.__dict__ = namespace
self.func = func
self.args = args
self.keywords = kwds
try:
from _functools import partial
except ImportError:
pass
上面大致讲的呢,就是通过调用functools.wrappers()
来创建了不一样的函数,但是名字却是一样的,且id不一样,功能也可能会有所改变。代码如下:
import functools
def m(func):
print(func.__name__)
print(id(func))
@functools.wraps(func)
def wrapper():
print(wrapper.__name__)
print(id(wrapper))
return wrapper
def method1():
pass
@m
def method2():
print(id(method2))
if __name__ == '__main__':
print(method2())
输出:
method2
1868266070224
method2
1868266070368
None
综上:调用该函数创建了另一个名字一样的函数,但是内部构造可能会不相同。