后缀自动机模板题.
关键时求解每个节点的 $right$ 大小.
由于后缀自动机在构建时会保证点和点的 $right$ 只可能没有交集,或者一个是另一个的真子集,我们可以不重复的对 $right$ 进行统计与更新.
从长度大的子串向前更新,沿着 $parent$ 跳即可.
最后再枚举一下.
Code:
#include <cstdio>
#include <algorithm>
#include <cstring>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 3000000
#define N 30
#define ll long long
using namespace std;
int last=1,tot=1,n;
int ch[maxn][N],cnt[maxn],f[maxn],dis[maxn],rk[maxn];
ll C[maxn],ans;
char str[maxn];
struct Suffix_Automaton{
void ins(int c){
int p=last,np=++tot; last=np; dis[np]=dis[p]+1;
while(p&&!ch[p][c])ch[p][c]=np,p=f[p];
if(!p) f[np]=1;
else{
int q=ch[p][c],nq;
if(dis[q]==dis[p]+1) f[np]=q;
else{
nq=++tot;
dis[nq]=dis[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
f[nq]=f[q],f[q]=f[np]=nq;
while(p&&ch[p][c]==q) ch[p][c]=nq,p=f[p];
}
}
cnt[last]=1;
}
}sam;
int main(){
//setIO("input");
scanf("%s",str),n=strlen(str);
for(int i=0;i<n;++i) sam.ins(str[i]-'a');
for(int i=1;i<=tot;++i) ++C[dis[i]];
for(int i=1;i<=tot;++i) C[i]+=C[i-1];
for(int i=1;i<=tot;++i) rk[C[dis[i]]--]=i;
for(int i=tot;i>=1;--i){
int p=rk[i];
cnt[f[p]]+=cnt[p];
if(cnt[p]>1) ans=max(ans,(ll)cnt[p]*dis[p]);
}
printf("%lld",ans);
return 0;
}