首先扩O:T了一个点(因为上界松),83分。

#include <cstdio>
using namespace std; int n, p; void exgcd(int a, int p, int &b, int &x){
if (p==){
b=, x=;
return;
}
exgcd(p, a%p, b, x);
int tmp=b;
b=x;
x=tmp-a/p*x;
return;
} int main(){
scanf("%d%d", &n, &p);
int x, y;
for (int i=; i<=n; ++i){
exgcd(i, p, x, y);
printf("%d\n", (x+p)%p);
}
return ;
}

然后费马,事实证明果然更慢,上界很紧。

#include <cstdio>
using namespace std; int n, p; int expower(int a, int pow, int mod){
int ans=;
while (pow){
if (pow&) ans=1LL*ans*a%mod;
a=1LL*a*a%mod;
pow>>=;
}
return ans;
} int main(){
scanf("%d%d", &n, &p);
for (int i=; i<=n; ++i){
printf("%d\n", expower(i, p-, p));
}
return ;
}

正解:首先$1^{-1} \equiv 1 \pmod p$

我们设:$p = k\cdot i + r,~r < i,~1 < i < p$

将其放在模p意义下:$k\cdot i + r \equiv 0 \pmod p$

两边同乘i,r就会得到:

$\begin{eqnarray*} k\cdot r^{-1} + i^{-1} &\equiv& 0 &\pmod p\\ i^{-1} &\equiv& -k\cdot r^{-1} &\pmod p\\ i^{-1} &\equiv& -\left\lfloor\frac{p}{i}\right\rfloor\cdot \left(p\bmod i\right)^{-1} &\pmod p\ \end{eqnarray*}$

于是核心代码就一行:

A[i] = -(p / i) * A[p % i];

我的代码:

注意:有可能是负数

#include <cstdio>
using namespace std; const int maxn=;
int n, p, a[maxn]; int main(){
scanf("%d%d", &n, &p);
a[]=;
printf("%d\n", a[]);
for (int i=; i<=n; ++i){
a[i]=(1LL*-(p/i)*a[p%i])%p;
a[i]=(a[i]+p)%p;
printf("%d\n", a[i]);
}
return ;
}
05-24 09:57