(2012浙江压轴题)
已知$a>0,b\in R$,函数$f(x)=4ax^3-2bx-a+b$.
1)证明:当$0\le x\le 1$时,
i)函数$f(x)$的最大值为$|2a-b|+a;$
ii)$f(x)+|2a-b|+a\ge0$
2)若$-1\le f(x)\le 1$对$x\in[0,1]$恒成立,求$a+b$的范围.

MT【190】绝对值的和-LMLPHP
证明:$f(0)=b-a,f(1)=3a-b$故$f(0)+f(1)=2a>0$,
所以$\max\{f(0),f(1)\}=\max\{|f(0)|,|f(1)|\}$
又$|2a-b|+a=\max\{|a-b|,|3a-b|\}=\max\{|f(0)|,|f(1)|\}$
\begin{align*}
\therefore |f(x)|
& =|(2x^3-3x+1)f(0)+(2x^3-x)f(1)| \\
&\le|(2x^3-3x+1)||f(0)|+|(2x^3-x)||f(1)|\\
&\le\left(|(2x^3-3x+1)|+|(2x^3-x)|\right)\max\{|f(0)|,|f(1)|\}\\
&=\max\{\left(|-2x+1|,|4x^3-4x+1|\right)\}(|2a-b|+a)\\
&\le|2a-b|+a
\end{align*}
最后一个不等式是因为$x\in[0,1]$时$|-2x+1|\le1,$
且$1\ge4x^3-4x+1=1-2x(2-2x)(1+x)\ge1-2\left(\dfrac{x+2-2x+1+x}{3}\right)^3=-1$

故第一题i)ii)得证。

2)由$|f(x)|\le1$得$|f(x)\le1$,即$|2a-b|\le 1-a$,故

$a+b=-1+3a+(1-a)-(2a-b)\ge-1+3a+|2a-b|-(2a-b)>-1$当$a\longrightarrow0,b=-1$时取到下确界.

$a+b=3-3(1-a)-(2a-b)\le3-3|2a-b|-(2a-b)\le3$当且仅当$a=2,b=1$时取到最大值.

注:1当然第二问用线性规划也是显然的.此题系数怪异其实也是和积分对应的几何意义有关.

2.还是$|a|+|b|=\max\{|a-b|,a+b|\}$

3.$2\max\{f,g\}=|f-g|+f+g$

4.$\max\{a,b\}\ge M_t\{a,b\}$(a,b的幂平均)

此题这个漂亮的做法若干年前也是自己想到的,但是一直没有很好的保存,现在重新按照思路编辑,感慨万千,留个纪念.

05-13 06:10