Description
为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。
魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。
只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。
由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。
Input
第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。
Output
输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。
Sample Input
4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17
【输入样例2】
3 1
1 2 1 1
Sample Output
32
【样例说明1】
如果小E走路径1→2→4,需要携带19+15=34个守护精灵;
如果小E走路径1→3→4,需要携带17+17=34个守护精灵;
如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;
如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。
综上所述,小E最少需要携带32个守护精灵。
【输出样例2】
-1
【样例说明2】
小E无法从1号节点到达3号节点,故输出-1。
HINT
2<=n<=50,000
0<=m<=100,000
1<=ai ,bi<=50,000
Source
首先有一个很简单的想法,假如我们按$a$值从小到大排序,那么随着$a$值的增大,为了保证答案最优,$b$值要相应的减小才行。所以我们可以用$LCT$维护这个过程,当加入一条新边时,若组成环且环上最大的$b$要大于当前边,那么就用这条边替换掉环上的边即可。对于用$LCT$维护边的信息有一个小技巧,就是对于每条边新建一个点,点权等于边权,向两个端点连边
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#define M 300010
#define ls ch[x][0]
#define rs ch[x][1]
using namespace std;
struct point{int u,v,a,b;}e[M];
int n,m,ans=1e9;
int fa[M],f[M],maxn[M],val[M],id[M],q[M],rev[M],ch[M][];
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
bool cmp(point a1,point a2) {return a1.a<a2.a;}
void pushdown(int x){if(rev[x]){rev[ls]^=,rev[rs]^=;swap(ls,rs),rev[x]^=;}}
void update(int x)
{
maxn[x]=val[x],id[x]=x;
if(maxn[ls]>maxn[x]) maxn[x]=maxn[ls],id[x]=id[ls];
if(maxn[rs]>maxn[x]) maxn[x]=maxn[rs],id[x]=id[rs];
}
int get(int x) {return ch[f[x]][]==x;}
int is_root(int x) {return ch[f[x]][]!=x&&ch[f[x]][]!=x;}
void rotate(int x)
{
int old=f[x],oldf=f[old],k=get(x);
if(!is_root(old)) ch[oldf][ch[oldf][]==old]=x;
ch[old][k]=ch[x][k^],f[ch[old][k]]=old;
ch[x][k^]=old,f[old]=x,f[x]=oldf;
update(old),update(x);
}
void splay(int x)
{
int top=,fa;q[top]=x;
for(int i=x;!is_root(i);i=f[i]) q[++top]=f[i];
for(int i=top;i;i--) pushdown(q[i]);
while(!is_root(x))
{
if(!is_root(fa=f[x]))
rotate(get(x)==get(fa)?fa:x);
rotate(x);
}
}
void access(int x)
{
for(int y=;x;y=x,x=f[x])
splay(x),ch[x][]=y,update(x);
}
void makeroot(int x) {access(x),splay(x),rev[x]^=;}
void spilt(int x,int y) {makeroot(x);access(y);splay(y);}
int query(int x,int y) {spilt(x,y);return id[y];}
void link(int x,int y) {makeroot(x);f[x]=y;splay(x);}
void cut(int x,int y) {spilt(x,y);ch[y][]=f[x]=;}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x,y,a,b;scanf("%d%d%d%d",&x,&y,&a,&b);
e[i]=(point){x,y,a,b};
}
sort(e+,e++m,cmp);
for(int i=;i<=n+m;i++) fa[i]=i,id[i]=i;
for(int i=;i<=m;i++) val[i+n]=e[i].b;
for(int i=;i<=m;i++)
{
int x=e[i].u,y=e[i].v;bool flag=true;
if(find(x)==find(y))
{
int id=query(x,y);
if(val[id]>e[i].b)
cut(e[id-n].u,id),cut(e[id-n].v,id);
else flag=false;
}
else fa[find(x)]=find(y);
if(flag) link(x,i+n),link(y,i+n);
if(find()==find(n)) ans=min(ans,e[i].a+val[query(,n)]);
}
if(find()!=find(n)) puts("-1");
else printf("%d\n",ans);
return ;
}