import sys, os
sys.path.append('F:\ml\DL\source-code')
from dataset.mnist import load_mnist
from PIL import Image
import numpy as np
#pickle提供了一个简单的持久化功能。可以将对象以文件的形式存放在磁盘上。
#pickle模块只能在python中使用,python中几乎所有的数据类型(列表,字典,集合,类等)都可以用pickle来序列化,
#pickle序列化后的数据,可读性差,人一般无法识别。
import pickle
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def softmax(x):
m = np.max(x)
return np.exp(x- m) / np.sum(np.exp(x - m))
def get_data():
(x_train, t_train), (x_test, t_test) = load_mnist(normalize = True, flatten = True, one_hot_label = False)
return x_test, t_test
def init_network():
with open("F:\\ml\DL\\source-code\\ch03\\sample_weight.pkl", 'rb') as f:
network = pickle.load(f)
return network
def predict(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(a1, W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2, W3) + b3
y = softmax(a3)
return y
x, t = get_data()
network = init_network()
accuracy_cnt = 0
for i in range(len(x)):
y = predict(network, x[i])
p = np.argmax(y)
if p == t[i]:
accuracy_cnt += 1
print("Accuracy:" + str(float(accuracy_cnt) / len(x)))
#批处理显示
x, t = get_data()
network = init_network()
batch_size = 100
accuracy_cnt = 0
for i in range(0, len(x), batch_size):
x_batch = x[i:i+batch_size]
y_batch = predict(network, x_batch)
p = np.argmax(y_batch, axis = 1)
accuracy_cnt += np.sum(p == t[i : i+batch_size])
print("Accuracy:" + str(float(accuracy_cnt) / len(x)))