设 $f:\bbR\to\bbR$ 二阶可微, 适合 $f(0)=1$, $f'(0)=0$, 并且 $$\bex f''(x)-5f'(x)+6f(x)\geq 0. \eex$$ 试证: $$\bex f(x)\geq 3e^{2x}-2e^{3x},\quad \forall\ x\in [0,\infty). \eex$$

05-11 11:30