Petri网导论入门学习(三)
Petri 网导论学习笔记(三)
原创码字不易,觉得不错请一键三连吧
这篇主要是1.1章节的收尾
(ノへ ̄、)
定义 1.4
设 N = ( S , T ; F ) N=(S,T;F) N=(S,T;F)为一个网。
1 ) N d = ( T , S ; F ) 1)N^{\mathrm{d}}=(T,S;F) 1)Nd=(T,S;F)称为网 N N N的对偶网(dual net);
2 ) N − 1 = ( S , T ; F − 1 ) 2)N^{-1}=(S,T;F^{-1}) 2)N−1=(S,T;F−1)称为网 N N N的逆网(inversed net),其中 F − 1 = { ( x , y ) ∣ ( y , x ) ∈ F } F^{-1}=\{\:(x,y)\:|\:(y,x)\in F\:\} F−1={(x,y)∣(y,x)∈F}
定义 1.5
设 N = ( S , T ; F ) 为一个网。如果 S 1 ⊆ S , T 1 ⊆ T F 1 = ( ( S 1 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F \text{设 }N=(S,T;F)\text{ 为一个网。如果}\\S_{1}\subseteq S,\quad T_{1}\subseteq T\\F_{1}=((S_{1}\times T_{1})\cup(T_{1}\times S_{1}))\cap F 设 N=(S,T;F) 为一个网。如果S1⊆S,T1⊆TF1=((S1×T1)∪(T1×S1))∩F
则称 N 1 = ( S 1 , T 1 ; F 1 ) 为网 N 的一个子网(subnet)。 \text{则称 }N_1=(S_1,T_1;F_1)\text{ 为网 }N\text{ 的一个子网(subnet)。} 则称 N1=(S1,T1;F1) 为网 N 的一个子网(subnet)。
定义 1.6
设 N = ( S , T ; F ) N=(S,T;F) N=(S,T;F)为一个网, S 1 ⊆ S . S_1\subseteq S. S1⊆S.
1 ) N o s ( S l ) 1) N_{\mathrm{os}}( S_{\mathrm{l} }) 1)Nos(Sl) = ( S 1 , T 1 ; F 1 ) ( S_{1}, T_{1}; F_{1}) (S1,T1;F1)称为网 N N N关于库所子集 S 1 S_1 S1的外延子网(outface sub-net),当且仅当:
T 1 = ∙ S 1 ∪ S 1 ∙ = ⋃ s ∈ S 1 ( ∙ s ∪ s ∙ ) F 1 = ( ( S 1 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F \begin{aligned}&T_{1}=^{\bullet}S_{1}\cup S_{1}^{\bullet}=\bigcup_{s\in S_{1}}(^{\bullet}s\cup s^{\bullet})\\&F_{1}=((S_{1}\times T_{1})\cup(T_{1}\times S_{1}))\cap F\end{aligned} T1=∙S1∪S1∙=s∈S1⋃(∙s∪s∙)F1=((S1×T1)∪(T1×S1))∩F
2 ) N i s ( S 1 ) = ( S 1 , T 2 ; F 2 ) 2)N_{\mathrm{is}}( S_{1}) = ( S_{1}, T_{2}; F_{2}) 2)Nis(S1)=(S1,T2;F2)称为网 N N N关于库所子集 S 1 S_1 S1的内连子网( inner-link sub-net),当且仅当
T 2 = ∙ S 1 ∩ S 1 ∙ = ( ⋃ s ∈ S 1 ∙ s ) ∩ ( ⋃ s ∈ S 1 s ∙ ) F 2 = ( ( S 1 × T 2 ) ∪ ( T 2 × S 1 ) ) ∩ F T_{2}={}^{\bullet}S_{1}\cap S_{1}^{\bullet}=(\bigcup_{s\in S_{1}}{}^{\bullet}s)\cap(\bigcup_{s\in S_{1}}s^{\bullet})\\F_{2}=((S_{1}\times T_{2})\cup(T_{2}\times S_{1}))\cap F T2=∙S1∩S1∙=(⋃s∈S1∙s)∩(⋃s∈S1s∙)F2=((S1×T2)∪(T2×S1))∩F
定义 1.7
设 N = ( S , T ; F ) N=(S,T;F) N=(S,T;F)为一个网 , T 1 ⊆ T . T_1\subseteq T. T1⊆T.
1 ) N o s ( T 1 ) = ( S 1 , T 1 ; F 1 ) 1)N_{\mathrm{os}}(T_{1})=(S_{1},T_{1};F_{1}) 1)Nos(T1)=(S1,T1;F1)称为网 N N N关于变迁子集 T 1 T_1 T1的外延子网,当且仅当
S 1 = ∙ T 1 ∪ T 1 ∙ = ⋃ t ∈ T 1 ( ∙ t ∪ t ∙ ) F 1 = ( ( S 1 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F \begin{aligned}&S_{1}=^{\bullet}T_{1}\cup T_{1}^{\bullet}=\bigcup_{t\in T_{1}}(^{\bullet}t\cup t^{\bullet})\\&F_{1}=((S_{1}\times T_{1})\cup(T_{1}\times S_{1}))\cap F\end{aligned} S1=∙T1∪T1∙=t∈T1⋃(∙t∪t∙)F1=((S1×T1)∪(T1×S1))∩F
2 ) N i s ( T 1 ) = ( S 2 , T 1 ; F 2 ) 2)N_{\mathrm{is}}( T_{1}) = ( S_{2}, T_{1}; F_{2}) 2)Nis(T1)=(S2,T1;F2)称为网 N N N关于变迁子集 T 1 T_1 T1的内连子网,当且仅当
S 2 = ∙ T 1 ∩ T 1 ∙ = ( ⋃ t ∈ T 1 ∙ t ) ∩ ( ⋃ t ∈ T 1 t ∙ ) F 2 = ( ( S 2 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F S_{2}=^{\bullet}T_{1}\cap T_{1}^{\bullet}=(\bigcup_{t\in T_{1}} {}^{\bullet}t)\cap(\bigcup_{t\in T_{1}}t^{\bullet})\\F_{2}=((S_{2}\times T_{1})\cup(T_{1}\times S_{1}))\cap F S2=∙T1∩T1∙=(t∈T1⋃∙t)∩(t∈T1⋃t∙)F2=((S2×T1)∪(T1×S1))∩F