第七届人文教育与社会科学国际学术会议(ICHESS 2024)_艾思科蓝_学术一站式服务平台

更多学术会议请看 学术会议-学术交流征稿-学术会议在线-艾思科蓝

目录

一、定义与起源:历史长河中的两条轨迹

二、原理差异:从浅层到深层的跨越

三、代码解析:实战中的机器学习与深度学习

机器学习示例:线性回归

深度学习示例:卷积神经网络(CNN)

四、应用差异:各自领域的璀璨星光

机器学习的应用场景

深度学习的应用场景

五、数据需求与计算资源:从量到质的跨越

数据需求

计算资源


一、定义与起源:历史长河中的两条轨迹

二、原理差异:从浅层到深层的跨越

三、代码解析:实战中的机器学习与深度学习

机器学习示例:线性回归
# 使用scikit-learn库实现线性回归  
from sklearn.linear_model import LinearRegression  
from sklearn.model_selection import train_test_split  
from sklearn.datasets import load_boston  
  
# 加载波士顿房价数据集  
X, y = load_boston(return_X_y=True)  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 创建线性回归模型  
model = LinearRegression()  
  
# 训练模型  
model.fit(X_train, y_train)  
  
# 预测测试集结果  
y_pred = model.predict(X_test)  
  
# 打印预测结果  
print("预测值:", y_pred[:5])
深度学习示例:卷积神经网络(CNN)
import tensorflow as tf  
from tensorflow.keras import layers  
  
# 定义CNN模型  
model = tf.keras.Sequential([  
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),  
    layers.MaxPooling2D((2, 2)),  
    layers.Conv2D(64, (3, 3), activation='relu'),  
    layers.MaxPooling2D((2, 2)),  
    layers.Conv2D(64, (3, 3), activation='relu'),  
    layers.Flatten(),  
    layers.Dense(64, activation='relu'),  
    layers.Dense(10)  # 假设有10个类别  
])  
  
# 编译模型  
model.compile(optimizer='adam',  
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),  
              metrics=['accuracy'])  
  
# 假设x_train和y_train已准备好(此处省略数据加载和预处理部分)  
# 训练模型  
model.fit(x_train, y_train, epochs=5)

四、应用差异:各自领域的璀璨星光

五、数据需求与计算资源:从量到质的跨越

11-01 05:42