espcn原理算法请参考上一篇论文,这里主要给实现。
数据集如下:尺寸相等即可
- 针对数据集,生成样本代码
- preeate_data.py
import imageio
from scipy import misc, ndimage
import numpy as np
import imghdr
import shutil
import os
import json
mat = np.array(
[[ 65.481, 128.553, 24.966 ],
[-37.797, -74.203, 112.0 ],
[ 112.0, -93.786, -18.214]])
mat_inv = np.linalg.inv(mat)
offset = np.array([16, 128, 128])
def rgb2ycbcr(rgb_img):
ycbcr_img = np.zeros(rgb_img.shape, dtype=np.uint8)
for x in range(rgb_img.shape[0]):
for y in range(rgb_img.shape[1]):
ycbcr_img[x, y, :] = np.round(np.dot(mat, rgb_img[x, y, :] * 1.0 / 255) + offset)
return ycbcr_img
def ycbcr2rgb(ycbcr_img):
rgb_img = np.zeros(ycbcr_img.shape, dtype=np.uint8)
for x in range(ycbcr_img.shape[0]):
for y in range(ycbcr_img.shape[1]):
[r, g, b] = ycbcr_img[x,y,:]
rgb_img[x, y, :] = np.maximum(0, np.minimum(255, np.round(np.dot(mat_inv, ycbcr_img[x, y, :] - offset) * 255.0)))
return rgb_img
def my_anti_shuffle(input_image, ratio):
shape = input_image.shape
ori_height = int(shape[0])
ori_width = int(shape[1])
ori_channels = int(shape[2])
if ori_height % ratio != 0 or ori_width % ratio != 0:
print("Error! Height and width must be divided by ratio!")
return
height = ori_height // ratio
width = ori_width // ratio
channels = ori_channels * ratio * ratio
anti_shuffle = np.zeros((height, width, channels), dtype=np.uint8)
for c in range(0, ori_channels):
for x in range(0, ratio):
for y in range(0, ratio):
anti_shuffle[:,:,c * ratio * ratio + x * ratio + y] = input_image[x::ratio, y::ratio, c]
return anti_shuffle
def shuffle(input_image, ratio):
shape = input_image.shape
height = int(shape[0]) * ratio
width = int(shape[1]) * ratio
channels = int(shape[2]) // ratio // ratio
shuffled = np.zeros((height, width, channels), dtype=np.uint8)
for i in range(0, height):
for j in range(0, width):
for k in range(0, channels):
shuffled[i,j,k] = input_image[i // ratio, j // ratio, k * ratio * ratio + (i % ratio) * ratio + (j % ratio)]
return shuffled
def prepare_images(params):
ratio, training_num, lr_stride, lr_size = params['ratio'], params['training_num'], params['lr_stride'], params['lr_size']
hr_stride = lr_stride * ratio
hr_size = lr_size * ratio
# first clear old images and create new directories
for ele in ['training', 'validation', 'test']:
new_dir = params[ele + '_image_dir'].format(ratio)
if os.path.isdir(new_dir):
shutil.rmtree(new_dir)
for sub_dir in ['/hr', 'lr']:
os.makedirs(new_dir + sub_dir)
image_num = 0
folder = params['training_image_dir'].format(ratio)
for root, dirnames, filenames in os.walk(params['image_dir']):
for filename in filenames:
path = os.path.join(root, filename)
if imghdr.what(path) != 'jpeg':
continue
hr_image = imageio.imread(path)
height = hr_image.shape[0]
new_height = height - height % ratio
width = hr_image.shape[1]
new_width = width - width % ratio
hr_image = hr_image[0:new_height,0:new_width]
blurred = ndimage.gaussian_filter(hr_image, sigma=(1, 1, 0))
lr_image = blurred[::ratio,::ratio,:]
height = hr_image.shape[0]
width = hr_image.shape[1]
vertical_number = height / hr_stride - 1
horizontal_number = width / hr_stride - 1
image_num = image_num + 1
if image_num % 10 == 0:
print ("Finished image: {}".format(image_num))
if image_num > training_num and image_num <= training_num + params['validation_num']:
folder = params['validation_image_dir'].format(ratio)
elif image_num > training_num + params['validation_num']:
folder = params['test_image_dir'].format(ratio)
#misc.imsave(folder + 'hr_full/' + filename[0:-4] + '.png', hr_image)
#misc.imsave(folder + 'lr_full/' + filename[0:-4] + '.png', lr_image)
for x in range(0, int(horizontal_number)):
for y in range(0, int(vertical_number)):
hr_sub_image = hr_image[y * hr_stride : y * hr_stride + hr_size, x * hr_stride : x * hr_stride + hr_size]
lr_sub_image = lr_image[y * lr_stride : y * lr_stride + lr_size, x * lr_stride : x * lr_stride + lr_size]
imageio.imwrite("{}hr/{}_{}_{}.png".format(folder, filename[0:-4], y, x), hr_sub_image)
imageio.imwrite("{}lr/{}_{}_{}.png".format(folder, filename[0:-4], y, x), lr_sub_image)
if image_num >= training_num + params['validation_num'] + params['test_num']:
break
else:
continue
break
def prepare_data(params):
ratio = params['ratio']
params['hr_stride'] = params['lr_stride'] * ratio
params['hr_size'] = params['lr_size'] * ratio
for ele in ['training', 'validation', 'test']:
new_dir = params[ele + '_dir'].format(ratio)
if os.path.isdir(new_dir):
shutil.rmtree(new_dir)
os.makedirs(new_dir)
ratio, lr_size, edge = params['ratio'], params['lr_size'], params['edge']
image_dirs = [d.format(ratio) for d in [params['training_image_dir'], params['validation_image_dir'], params['test_image_dir']]]
data_dirs = [d.format(ratio) for d in [params['training_dir'], params['validation_dir'], params['test_dir']]]
hr_start_idx = ratio * edge // 2
hr_end_idx = hr_start_idx + (lr_size - edge) * ratio
sub_hr_size = (lr_size - edge) * ratio
for dir_idx, image_dir in enumerate(image_dirs):
data_dir = data_dirs[dir_idx]
print ("Creating {}".format(data_dir))
for root, dirnames, filenames in os.walk(image_dir + "/lr"):
for filename in filenames:
lr_path = os.path.join(root, filename)
hr_path = image_dir + "/hr/" + filename
lr_image = imageio.imread(lr_path)
hr_image = imageio.imread(hr_path)
# convert to Ycbcr color space
lr_image_y = rgb2ycbcr(lr_image)
hr_image_y = rgb2ycbcr(hr_image)
lr_data = lr_image_y.reshape((lr_size * lr_size * 3))
sub_hr_image_y = hr_image_y[int(hr_start_idx):int(hr_end_idx):1,int(hr_start_idx):int(hr_end_idx):1]
hr_data = my_anti_shuffle(sub_hr_image_y, ratio).reshape(sub_hr_size * sub_hr_size * 3)
data = np.concatenate([lr_data, hr_data])
data.astype('uint8').tofile(data_dir + "/" + filename[0:-4])
def remove_images(params):
# Don't need old image folders
for ele in ['training', 'validation', 'test']:
rm_dir = params[ele + '_image_dir'].format(params['ratio'])
if os.path.isdir(rm_dir):
shutil.rmtree(rm_dir)
if __name__ == '__main__':
with open("./params.json", 'r') as f:
params = json.load(f)
print("Preparing images with scaling ratio: {}".format(params['ratio']))
print ("If you want a different ratio change 'ratio' in params.json")
print ("Splitting images (1/3)")
prepare_images(params)
print ("Preparing data, this may take a while (2/3)")
prepare_data(params)
print ("Cleaning up split images (3/3)")
remove_images(params)
print("Done, you can now train the model!")
- generate.py
import argparse
from PIL import Image
import imageio
import tensorflow as tf
from scipy import ndimage
from scipy import misc
import numpy as np
from prepare_data import *
from psnr import psnr
import json
import pdb
from espcn import ESPCN
def get_arguments():
parser = argparse.ArgumentParser(description='EspcnNet generation script')
parser.add_argument('--checkpoint', type=str,
help='Which model checkpoint to generate from',default="logdir_2x/train")
parser.add_argument('--lr_image', type=str,
help='The low-resolution image waiting for processed.',default="images/butterfly_GT.jpg")
parser.add_argument('--hr_image', type=str,
help='The high-resolution image which is used to calculate PSNR.')
parser.add_argument('--out_path', type=str,
help='The output path for the super-resolution image',default="result/butterfly_HR")
return parser.parse_args()
def check_params(args, params):
if len(params['filters_size']) - len(params['channels']) != 1:
print("The length of 'filters_size' must be greater then the length of 'channels' by 1.")
return False
return True
def generate():
args = get_arguments()
with open("./params.json", 'r') as f:
params = json.load(f)
if check_params(args, params) == False:
return
sess = tf.Session()
net = ESPCN(filters_size=params['filters_size'],
channels=params['channels'],
ratio=params['ratio'],
batch_size=1,
lr_size=params['lr_size'],
edge=params['edge'])
loss, images, labels = net.build_model()
lr_image = tf.placeholder(tf.uint8)
lr_image_data = imageio.imread(args.lr_image)
lr_image_ycbcr_data = rgb2ycbcr(lr_image_data)
lr_image_y_data = lr_image_ycbcr_data[:, :, 0:1]
lr_image_cb_data = lr_image_ycbcr_data[:, :, 1:2]
lr_image_cr_data = lr_image_ycbcr_data[:, :, 2:3]
lr_image_batch = np.zeros((1,) + lr_image_y_data.shape)
lr_image_batch[0] = lr_image_y_data
sr_image = net.generate(lr_image)
saver = tf.train.Saver()
try:
model_loaded = net.load(sess, saver, args.checkpoint)
except:
raise Exception("Failed to load model, does the ratio in params.json match the ratio you trained your checkpoint with?")
if model_loaded:
print("[*] Checkpoint load success!")
else:
print("[*] Checkpoint load failed/no checkpoint found")
return
sr_image_y_data = sess.run(sr_image, feed_dict={lr_image: lr_image_batch})
sr_image_y_data = shuffle(sr_image_y_data[0], params['ratio'])
sr_image_ycbcr_data =np.array(Image.fromarray(lr_image_ycbcr_data).resize(params['ratio'] * np.array(lr_image_data.shape[0:2]),Image.BICUBIC))
edge = params['edge'] * params['ratio'] / 2
sr_image_ycbcr_data = np.concatenate((sr_image_y_data, sr_image_ycbcr_data[int(edge):int(-edge),int(edge):int(-edge),1:3]), axis=2)
sr_image_data = ycbcr2rgb(sr_image_ycbcr_data)
imageio.imwrite(args.out_path + '.png', sr_image_data)
if args.hr_image != None:
hr_image_data = misc.imread(args.hr_image)
model_psnr = psnr(hr_image_data, sr_image_data, edge)
print('PSNR of the model: {:.2f}dB'.format(model_psnr))
sr_image_bicubic_data = misc.imresize(lr_image_data,
params['ratio'] * np.array(lr_image_data.shape[0:2]),
'bicubic')
misc.imsave(args.out_path + '_bicubic.png', sr_image_bicubic_data)
bicubic_psnr = psnr(hr_image_data, sr_image_bicubic_data, 0)
print('PSNR of Bicubic: {:.2f}dB'.format(bicubic_psnr))
if __name__ == '__main__':
generate()
train.py
```python
from __future__ import print_function
import argparse
from datetime import datetime
import os
import sys
import time
import json
import time
import tensorflow as tf
from reader import create_inputs
from espcn import ESPCN
import pdb
try:
xrange
except Exception as e:
xrange = range
# 批次
BATCH_SIZE = 32
# epochs
NUM_EPOCHS = 100
# learning rate
LEARNING_RATE = 0.0001
# logdir
LOGDIR_ROOT = './logdir_{}x'
def get_arguments():
parser = argparse.ArgumentParser(description='EspcnNet example network')
# 权重
parser.add_argument('--checkpoint', type=str,
help='Which model checkpoint to load from', default=None)
# batch_size
parser.add_argument('--batch_size', type=int, default=BATCH_SIZE,
help='How many image files to process at once.')
# epochs
parser.add_argument('--epochs', type=int, default=NUM_EPOCHS,
help='Number of epochs.')
# 学习率
parser.add_argument('--learning_rate', type=float, default=LEARNING_RATE,
help='Learning rate for training.')
# logdir_root
parser.add_argument('--logdir_root', type=str, default=LOGDIR_ROOT,
help='Root directory to place the logging '
'output and generated model. These are stored '
'under the dated subdirectory of --logdir_root. '
'Cannot use with --logdir.')
# 返回参数
return parser.parse_args()
def check_params(args, params):
if len(params['filters_size']) - len(params['channels']) != 1:
print("The length of 'filters_size' must be greater then the length of 'channels' by 1.")
return False
return True
def train():
args = get_arguments()
# load json
with open("./params.json", 'r') as f:
params = json.load(f)
# 存在
if check_params(args, params) == False:
return
logdir_root = args.logdir_root # ./logdir
if logdir_root == LOGDIR_ROOT:
logdir_root = logdir_root.format(params['ratio']) # ./logdir_{RATIO}x
logdir = os.path.join(logdir_root, 'train') # ./logdir_{RATIO}x/train
# Load training data as np arrays
# 加载数据
lr_images, hr_labels = create_inputs(params)
# 网络模型
net = ESPCN(filters_size=params['filters_size'],
channels=params['channels'],
ratio=params['ratio'],
batch_size=args.batch_size,
lr_size=params['lr_size'],
edge=params['edge'])
loss, images, labels = net.build_model()
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
trainable = tf.trainable_variables()
optim = optimizer.minimize(loss, var_list=trainable)
# set up logging for tensorboard
writer = tf.summary.FileWriter(logdir)
writer.add_graph(tf.get_default_graph())
summaries = tf.summary.merge_all()
# set up session
sess = tf.Session()
# saver for storing/restoring checkpoints of the model
saver = tf.train.Saver()
init = tf.initialize_all_variables()
sess.run(init)
if net.load(sess, saver, logdir):
print("[*] Checkpoint load success!")
else:
print("[*] Checkpoint load failed/no checkpoint found")
try:
steps, start_average, end_average = 0, 0, 0
start_time = time.time()
for ep in xrange(1, args.epochs + 1):
batch_idxs = len(lr_images) // args.batch_size
batch_average = 0
for idx in xrange(0, batch_idxs):
# On the fly batch generation instead of Queue to optimize GPU usage
batch_images = lr_images[idx * args.batch_size : (idx + 1) * args.batch_size]
batch_labels = hr_labels[idx * args.batch_size : (idx + 1) * args.batch_size]
steps += 1
summary, loss_value, _ = sess.run([summaries, loss, optim], feed_dict={images: batch_images, labels: batch_labels})
writer.add_summary(summary, steps)
batch_average += loss_value
# Compare loss of first 20% and last 20%
batch_average = float(batch_average) / batch_idxs
if ep < (args.epochs * 0.2):
start_average += batch_average
elif ep >= (args.epochs * 0.8):
end_average += batch_average
duration = time.time() - start_time
print('Epoch: {}, step: {:d}, loss: {:.9f}, ({:.3f} sec/epoch)'.format(ep, steps, batch_average, duration))
start_time = time.time()
net.save(sess, saver, logdir, steps)
except KeyboardInterrupt:
print()
finally:
start_average = float(start_average) / (args.epochs * 0.2)
end_average = float(end_average) / (args.epochs * 0.2)
print("Start Average: [%.6f], End Average: [%.6f], Improved: [%.2f%%]" \
% (start_average, end_average, 100 - (100*end_average/start_average)))
if __name__ == '__main__':
train()
model 实现tensorflow版本
import tensorflow as tf
import os
import sys
import pdb
def create_variable(name, shape):
'''Create a convolution filter variable with the specified name and shape,
and initialize it using Xavier initialition.'''
initializer = tf.contrib.layers.xavier_initializer_conv2d()
variable = tf.Variable(initializer(shape=shape), name=name)
return variable
def create_bias_variable(name, shape):
'''Create a bias variable with the specified name and shape and initialize
it to zero.'''
initializer = tf.constant_initializer(value=0.0, dtype=tf.float32)
return tf.Variable(initializer(shape=shape), name)
class ESPCN:
def __init__(self, filters_size, channels, ratio, batch_size, lr_size, edge):
self.filters_size = filters_size
self.channels = channels
self.ratio = ratio
self.batch_size = batch_size
self.lr_size = lr_size
self.edge = edge
self.variables = self.create_variables()
def create_variables(self):
var = dict()
var['filters'] = list()
# the input layer
var['filters'].append(
create_variable('filter',
[self.filters_size[0],
self.filters_size[0],
1,
self.channels[0]]))
# the hidden layers
for idx in range(1, len(self.filters_size) - 1):
var['filters'].append(
create_variable('filter',
[self.filters_size[idx],
self.filters_size[idx],
self.channels[idx - 1],
self.channels[idx]]))
# the output layer
var['filters'].append(
create_variable('filter',
[self.filters_size[-1],
self.filters_size[-1],
self.channels[-1],
self.ratio**2]))
var['biases'] = list()
for channel in self.channels:
var['biases'].append(create_bias_variable('bias', [channel]))
var['biases'].append(create_bias_variable('bias', [float(self.ratio)**2]))
image_shape = (self.batch_size, self.lr_size, self.lr_size, 3)
var['images'] = tf.placeholder(tf.uint8, shape=image_shape, name='images')
label_shape = (self.batch_size, self.lr_size - self.edge, self.lr_size - self.edge, 3 * self.ratio**2)
var['labels'] = tf.placeholder(tf.uint8, shape=label_shape, name='labels')
return var
def build_model(self):
images, labels = self.variables['images'], self.variables['labels']
input_images, input_labels = self.preprocess([images, labels])
output = self.create_network(input_images)
reduced_loss = self.loss(output, input_labels)
return reduced_loss, images, labels
def save(self, sess, saver, logdir, step):
# print('[*] Storing checkpoint to {} ...'.format(logdir), end="")
sys.stdout.flush()
if not os.path.exists(logdir):
os.makedirs(logdir)
checkpoint = os.path.join(logdir, "model.ckpt")
saver.save(sess, checkpoint, global_step=step)
# print('[*] Done saving checkpoint.')
def load(self, sess, saver, logdir):
print("[*] Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(logdir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess, os.path.join(logdir, ckpt_name))
return True
else:
return False
def preprocess(self, input_data):
# cast to float32 and normalize the data
input_list = list()
for ele in input_data:
if ele is None:
continue
ele = tf.cast(ele, tf.float32) / 255.0
input_list.append(ele)
input_images, input_labels = input_list[0][:,:,:,0:1], None
# Generate doesn't use input_labels
ratioSquare = self.ratio * self.ratio
if input_data[1] is not None:
input_labels = input_list[1][:,:,:,0:ratioSquare]
return input_images, input_labels
def create_network(self, input_labels):
'''The default structure of the network is:
input (3 channels) ---> 5 * 5 conv (64 channels) ---> 3 * 3 conv (32 channels) ---> 3 * 3 conv (3*r^2 channels)
Where `conv` is 2d convolutions with a non-linear activation (tanh) at the output.
'''
current_layer = input_labels
for idx in range(len(self.filters_size)):
conv = tf.nn.conv2d(current_layer, self.variables['filters'][idx], [1, 1, 1, 1], padding='VALID')
with_bias = tf.nn.bias_add(conv, self.variables['biases'][idx])
if idx == len(self.filters_size) - 1:
current_layer = with_bias
else:
current_layer = tf.nn.tanh(with_bias)
return current_layer
def loss(self, output, input_labels):
residual = output - input_labels
loss = tf.square(residual)
reduced_loss = tf.reduce_mean(loss)
tf.summary.scalar('loss', reduced_loss)
return reduced_loss
def generate(self, lr_image):
lr_image = self.preprocess([lr_image, None])[0]
sr_image = self.create_network(lr_image)
sr_image = sr_image * 255.0
sr_image = tf.cast(sr_image, tf.int32)
sr_image = tf.maximum(sr_image, 0)
sr_image = tf.minimum(sr_image, 255)
sr_image = tf.cast(sr_image, tf.uint8)
return sr_image
- 读取文件
import tensorflow as tf
import numpy as np
import os
import pdb
def create_inputs(params):
"""
Loads prepared training files and appends them as np arrays to a list.
This approach is better because a FIFOQueue with a reader can't utilize
the GPU while this approach can.
"""
sess = tf.Session()
lr_images, hr_labels = [], []
training_dir = params['training_dir'].format(params['ratio'])
# Raise exception if user has not ran prepare_data.py yet
if not os.path.isdir(training_dir):
raise Exception("You must first run prepare_data.py before you can train")
lr_shape = (params['lr_size'], params['lr_size'], 3)
hr_shape = output_shape = (params['lr_size'] - params['edge'], params['lr_size'] - params['edge'], 3 * params['ratio']**2)
for file in os.listdir(training_dir):
train_file = open("{}/{}".format(training_dir, file), "rb")
train_data = np.fromfile(train_file, dtype=np.uint8)
lr_image = train_data[:17 * 17 * 3].reshape(lr_shape)
lr_images.append(lr_image)
hr_label = train_data[17 * 17 * 3:].reshape(hr_shape)
hr_labels.append(hr_label)
return lr_images, hr_labels
psnr计算
import numpy as np
import math
def psnr(hr_image, sr_image, hr_edge):
#assume RGB image
hr_image_data = np.array(hr_image)
if hr_edge > 0:
hr_image_data = hr_image_data[hr_edge:-hr_edge, hr_edge:-hr_edge].astype('float32')
sr_image_data = np.array(sr_image).astype('float32')
diff = sr_image_data - hr_image_data
diff = diff.flatten('C')
rmse = math.sqrt( np.mean(diff ** 2.) )
return 20*math.log10(255.0/rmse)
训练过程有个BUG:bias is not unsupportd,但是也能学习。