第三道:轮转数组(中等)

《LeetCode热题100》---<5.②普通数组篇五道>-LMLPHP

 方法一:使用额外的数组

class Solution {
    public void rotate(int[] nums, int k) {
        int len = nums.length;
        int[] newArr = new int[len];
        for (int i = 0; i < len; ++i) {
            newArr[(i + k) % len] = nums[i];
        }
        System.arraycopy(newArr, 0, nums, 0, len);
    }
}

方法二:数组翻转

​​​​​​class Solution {
    public void rotate(int[] nums, int k) {
        k %= nums.length;
        reverse(nums, 0, nums.length - 1);
        reverse(nums, 0, k - 1);
        reverse(nums, k, nums.length - 1);
    }

    public void reverse(int[] nums, int start, int end) {
        while (start < end) {
            int temp = nums[start];
            nums[start] = nums[end];
            nums[end] = temp;
            start += 1;
            end -= 1;
        }
    }
}

《LeetCode热题100》---<5.②普通数组篇五道>-LMLPHP

第四道:除自身以外数组的乘积(中等)

《LeetCode热题100》---<5.②普通数组篇五道>-LMLPHP

 方法一:前缀之积乘以后缀之积

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int length = nums.length;

        // L 和 R 分别表示左右两侧的乘积列表
        int[] L = new int[length];
        int[] R = new int[length];

        int[] answer = new int[length];

        // L[i] 为索引 i 左侧所有元素的乘积
        // 对于索引为 '0' 的元素,因为左侧没有元素,所以 L[0] = 1
        L[0] = 1;
        for (int i = 1; i < length; i++) {
            L[i] = nums[i - 1] * L[i - 1];
        }

        // R[i] 为索引 i 右侧所有元素的乘积
        // 对于索引为 'length-1' 的元素,因为右侧没有元素,所以 R[length-1] = 1
        R[length - 1] = 1;
        for (int i = length - 2; i >= 0; i--) {
            R[i] = nums[i + 1] * R[i + 1];
        }

        // 对于索引 i,除 nums[i] 之外其余各元素的乘积就是左侧所有元素的乘积乘以右侧所有元素的乘积
        for (int i = 0; i < length; i++) {
            answer[i] = L[i] * R[i];
        }

        return answer;
    }
}

方法二:方法一的进阶,空间复杂度 O(1) 的方法 

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int length = nums.length;
        int[] answer = new int[length];

        // answer[i] 表示索引 i 左侧所有元素的乘积
        // 因为索引为 '0' 的元素左侧没有元素, 所以 answer[0] = 1
        answer[0] = 1;
        for (int i = 1; i < length; i++) {
            answer[i] = nums[i - 1] * answer[i - 1];
        }

        // R 为右侧所有元素的乘积
        // 刚开始右边没有元素,所以 R = 1
        int R = 1;
        for (int i = length - 1; i >= 0; i--) {
            // 对于索引 i,左边的乘积为 answer[i],右边的乘积为 R
            answer[i] = answer[i] * R;
            // R 需要包含右边所有的乘积,所以计算下一个结果时需要将当前值乘到 R 上
            R *= nums[i];
        }
        return answer;
    }
}
08-03 04:50