题目描述

给定一个二叉树,找出其最大深度。

最大深度是从根节点到最远叶子节点的最长路径上的节点数。

示例:

给定二叉树 [3,9,20,null,null,15,7]

    3
   / \
  9  20
    /  \
   15   7

最大深度是 3。

方法一:递归

解题步骤

  1. 如果节点为空,返回深度 0。
  2. 递归计算左子树的最大深度。
  3. 递归计算右子树的最大深度。
  4. 返回左右子树深度的最大值加一(当前节点的深度)。

Python 示例

class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

def maxDepth(root):
    if not root:
        return 0
    return 1 + max(maxDepth(root.left), maxDepth(root.right))

算法分析

  • 时间复杂度:O(N),其中 N 为树的节点数,每个节点访问一次。
  • 空间复杂度:O(H),其中 H 为树的高度,因为递归栈的深度由树的高度决定。

算法图解与说明

  3            <-- Level 1
 / \
9  20          <-- Level 2
  /  \
 15   7        <-- Level 3

调用栈情况(以节点3为例):
maxDepth(3)
=> maxDepth(9), maxDepth(20)
   => maxDepth(null), maxDepth(null), maxDepth(15), maxDepth(7)

方法二:迭代(使用栈)

解题步骤

  1. 使用栈来模拟递归过程,每个元素为节点及其当前深度。
  2. 初始化栈包含根节点和深度 1。
  3. 当栈不为空,弹出节点并更新最大深度。
  4. 将节点的左右子节点及其深度压入栈中。

Python 示例

def maxDepthIterative(root):
    if not root:
        return 0
    stack = [(root, 1)]
    max_depth = 0
    while stack:
        node, depth = stack.pop()
        if node:
            max_depth = max(max_depth, depth)
            stack.append((node.left, depth + 1))
            stack.append((node.right, depth + 1))
    return max_depth

算法分析

  • 时间复杂度:O(N)
  • 空间复杂度:O(N)

算法图解与说明

栈的操作示例:
初始: [(3, 1)]
操作: 弹出(3, 1), 压入(9, 2), 压入(20, 2)
接着: 弹出(20, 2), 压入(15, 3), 压入(7, 3)
接着: 弹出(7, 3), 弹出(15, 3), 弹出(9, 2)

方法三:层序遍历(使用队列)

解题步骤

  1. 使用队列实现层序遍历。
  2. 每遍历完一层,深度加一。

Python 示例

from collections import deque

def maxDepthUsingBFS(root):
    if not root:
        return 0
    queue = deque([root])
    depth = 0
    while queue:
        for _ in range(len(queue)):
            node = queue.popleft()
            if node.left:
                queue.append(node.left)
            if node.right:
                queue.append(node.right)
        depth += 1
    return depth

算法分析

  • 时间复杂度:O(N)

  • 空间复杂度:O(N)

算法图解与说明

队列操作示例:
初始: [3]
操作: 弹出3, 压入9, 压入20
接着: 弹出9, 弹出20, 压入15, 压入7
接着: 弹出15, 弹出7

方法四:尾递归优化

解题步骤

  1. 使用尾递归形式来优化递归的性能。
  2. 传递当前深度作为参数,避免额外的递归开销。

Python 示例

def maxDepthTailRecursive(root, depth=0):
    if not root:
        return depth
    return max(maxDepthTailRecursive(root.left, depth + 1), maxDepthTailRecursive(root.right, depth + 1))

算法分析

  • 时间复杂度:O(N)
  • 空间复杂度:O(H),利用尾递归优化,Python 中不一定有效,取决于解释器是否优化尾调用。

算法图解与说明

递归调用栈(尾递归):
maxDepthTailRecursive(3, 0)
=> maxDepthTailRecursive(9, 1), maxDepthTailRecursive(20, 1)
   => maxDepthTailRecursive(null, 2), ...

方法五:分治法

解题步骤

  1. 对每个节点,分别求解左右子树的最大深度。
  2. 合并左右子树深度的结果,取最大值加一。

Python 示例

def maxDepthDivideAndConquer(root):
    if not root:
        return 0
    left_depth = maxDepthDivideAndConquer(root.left)
    right_depth = maxDepthDivideAndConquer(root.right)
    return 1 + max(left_depth, right_depth)

算法分析

  • 时间复杂度:O(N)
  • 空间复杂度:O(H)

算法图解与说明

分治递归过程:
maxDepthDivideAndConquer(3)
=> maxDepthDivideAndConquer(9), maxDepthDivideAndConquer(20)
   => maxDepthDivideAndConquer(null), maxDepthDivideAndConquer(null), ...

应用示例

上述各方法均适用于任何形式的二叉树结构,可以有效解决实际问题中的深度计算问题。

05-13 08:06