目录

1. 简介

2. 步骤

3. 优点

4. 代码

5. 运行结果


1. 简介

        本文介绍了双边滤波图像去雾算法,旨在消除雾霾对图像质量的影响,能够保留边缘信息并去除噪声,有效提高图像的清晰度和对比度。双边滤波(Bilateral Filtering)是一种用于图像处理的非线性滤波方法,它能够在平滑图像的同时保留边缘细节,并结合了空间域和强度域的信息,以避免在平滑噪声的同时模糊图像的边缘。

        首先对图像进行频域变换,将原始图像分解为高频成分和低频成分。然后分别对高频成分和低频成分应用双边滤波算法,以去除噪声和增强边缘信息。最后将处理后的高频成分和低频成分进行逆频域变换,得到去雾后的图像。这种滤波技术特别适用于去噪和图像增强。

        在频域和空域中同时进行滤波的方法,能够在去除噪声的同时保留边缘信息。其基本原理是利用像素强度相似性的度量来调整权重,将权重与邻域像素的强度值相乘,然后对所有邻域像素的强度值进行加权平均。

        由于双边滤波算法考虑了像素的空间信息和灰度信息,该算法具有较好的泛化能力和较高的运行效率,能够保留边缘信息并去除噪声,显著提高图像的清晰度和对比度,因此能够更好地保护图像的细节和边缘可以为图像处理和计算机视觉领域提供有力支持。

        双边滤波器的输出是输入图像中每个像素的加权平均值,这个权重取决于空间距离和像素值差异两个因素。具体公式如下:

双边滤波去雾算法-LMLPHP

2. 步骤

        1.选择邻域S:对于每个像素点x,确定一个邻域S,通常是一个正方形或圆形窗口。

        2.计算权重:

                空间权重双边滤波去雾算法-LMLPHP(双边滤波去雾算法-LMLPHP):计算邻域内每个像素与中心像素的空间距离,并通过高斯函数转换为权重。

                强度权重双边滤波去雾算法-LMLPHP(I_{input}(双边滤波去雾算法-LMLPHP)-I_{input}(x)):计算邻域内每个像素与中心像素的强度差异,并通过高斯函数转换为权重。

        3.加权平均:计算每个像素的加权平均值,得到滤波后的像素值。

        4.归一化:使用归一化因子双边滤波去雾算法-LMLPHP对权重进行归一化,确保输出像素值在合理范围内。

3. 优点

        1.能有效去除图像噪声,同时保留图像边缘细节。

        2.不会产生明显的边缘模糊现象。

4. 代码

import cv2
import numpy as np

def dehaze(image, w=1, t0=0.4, p=0.8):
    # 估计全局大气光照
    dark_channel = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    dark_channel = cv2.min(dark_channel, cv2.blur(dark_channel, (15, 15)))
    hist = cv2.calcHist([dark_channel], [0], None, [256], [0, 256])
    hist_cum = hist.cumsum()
    percentile = (1 - w) * hist_cum[-1]
    atmospheric_light = 255 - np.argmax(hist_cum > percentile)

    # 估计透射率
    normalized_image = np.uint8(image / atmospheric_light)  # 将数据类型转换为8位无符号整数
    dark_channel = cv2.min(cv2.cvtColor(normalized_image, cv2.COLOR_BGR2GRAY), cv2.blur(dark_channel, (15, 15)))
    transmission = 1 - t0 * dark_channel

    # 双边滤波
    guide = cv2.GaussianBlur(image, (0, 0), p)
    dehazed_image = np.zeros_like(image)
    for i in range(3):
        dehazed_image[:, :, i] = (image[:, :, i] - atmospheric_light) / cv2.max(transmission, 0.1) + atmospheric_light
    dehazed_image = guide * transmission[:, :, np.newaxis] + dehazed_image * (1 - transmission[:, :, np.newaxis])
    return dehazed_image.astype(np.uint8)

# 读取输入图像
image = cv2.imread('xue_foggy.png')
# 进行去雾处理
dehazed_image = dehaze(image)
# 显示结果
cv2.imshow('Input', image)
cv2.imshow('Dehazed', dehazed_image)
cv2.waitKey()

5. 运行结果

双边滤波去雾算法-LMLPHP

        图像结果表明,双边滤波去雾算法在去雾过程中能够保留边缘细节,能够显著提高图像的清晰度和对比度,有效消除雾霾对图像质量的影响。但在复杂场景、低光照条件或存在运动模糊时可能产生其它问题。

 

05-24 11:33