文章目录

1. 硬件电路

2. RTC操作注意事项

操作步骤

3. 代码实现

3.1 读写备份寄存器

3.1.1 main.c

3.2 实时时钟

3.2.1 MyRTC.c

3.2.2 MyRTC.h

3.2.3 main.c


1. 硬件电路

对于BKP备份寄存器和RTC实时时钟的详细解析可以看下面这篇文章:

STM32读写备份寄存器和实时时钟-LMLPHP

1. 备用电池供电

这个部分提供了两种连接方式:

  • 简单连接(左侧):使用一个3V的电池B1直接连接到VBAT和GND。这样设计简单,但是电源冗余不高。
  • 推荐连接(中间):使用两个3V的电池B2和B3通过两个二极管D1和D2连接到VBAT和GND。这样设计增加了电源的可靠性,因为如果一个电池失效,另一个电池还能提供电源。电容C3(0.1uF)用于滤波,稳定电压。

2. 外部低速晶振

  • 晶振部分(中间):使用一个32.768kHz的晶振(X1)连接到两个10pF的电容(C1和C2),并接地。这部分电路提供了一个稳定的时钟信号,通常用于RTC(实时时钟)功能。
  • 连接到STM32单片机(右侧):OSC32_IN和OSC32_OUT分别连接到STM32单片机的PC14和PC15引脚。

3. STM32单片机连接

  • 供电和地(右侧):VDD和VSS分别是电源和地,VDD连接到电源正极,VSS连接到地。VBAT连接到备用电池供电部分的输出。
  • 时钟信号(右侧):PC14和PC15分别连接到外部低速晶振的OSC32_IN和OSC32_OUT。
  • 其他引脚(右侧):图中列出了STM32F103C8T6单片机的引脚配置,包括PA0到PA15,PB0到PB15等。这些引脚可以根据具体应用进行配置。

2. RTC操作注意事项

执行以下操作将使能对BKP和RTC的访问:

使能PWR和BKP时钟

  • 设置RCC_APB1ENR寄存器中的PWREN和BKPEN位,开启PWR和BKP的时钟。

使能对BKP和RTC的访问

  • 设置PWR_CR寄存器中的DBP位,使能对BKP和RTC的访问。

读取RTC寄存器时的注意事项

  • 如果RTC的APB1接口曾经处于禁止状态,则在读取RTC寄存器之前,软件必须首先等待RTC_CRL寄存器中的RSF(寄存器同步标志)位被硬件置1。

进入配置模式

  • 必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器。

写操作的顺序

  • 对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CRL寄存器中的RTOFF(状态位)来判断RTC寄存器是否处于更新中。仅当RTOFF状态位为1时,才可以写入RTC寄存器。

操作步骤

开启PWR和BKP的时钟

  • 正常情况下,外设第一步是开启时钟即可使用,但对于BKP和RTC这两个外设,必须首先设置RCC_APB1ENR以开启APB1外设时钟,并同时开启PWR和BKP的时钟。对于RTC来说,没有单独开启时钟的选项,还需要设置PWR_CR的DBP位。

同步RTC寄存器

  • 刚上电时,需要调用RTC等待同步函数。因为RTC的寄存器在RTCCLK的同步下变更,当用PCLK1(36MHz)驱动的总线读取RTCCLK(32KHz)驱动的寄存器时,会有时钟不同步的问题。RTC寄存器只有在RTCCLK上升沿更新,所以需要等待同步。

进入配置模式

  • RTC进入配置模式的标志位需要被置1,才能设置时间。在操作寄存器的库函数中,已经包含了这个操作,所以不需要单独调用函数进入配置模式。

写入操作

  • 写入之前,需要等待RTOFF状态位为1后才能写入,这是因为PCLK1和RTCCLK频率不同。

3. 代码实现

3.1 读写备份寄存器

功能:先初始化->写DR->读DR->写入和读出是否一致

BKP初始化步骤

  • 开启PWR和BKP时钟
  • 使用PWR的一个函数,使能对BKP和RTC的访问
  • BKP写入数据函数
  • BKP读出数据函数

3.1.1 main.c

关于按键和oled的程序,参考专栏中之前的教程。

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Key.h"

uint8_t KeyNum;					//定义用于接收按键键码的变量

uint16_t ArrayWrite[] = {0x1234, 0x5678};	//定义要写入数据的测试数组
uint16_t ArrayRead[2];						//定义要读取数据的测试数组

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	Key_Init();					//按键初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "W:");
	OLED_ShowString(2, 1, "R:");
	
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);		//开启PWR的时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);		//开启BKP的时钟
	
	/*备份寄存器访问使能*/
	PWR_BackupAccessCmd(ENABLE);							//使用PWR开启对备份寄存器的访问
	
	while (1)
	{
		KeyNum = Key_GetNum();		//获取按键键码
		
		if (KeyNum == 1)			//按键1按下
		{
			ArrayWrite[0] ++;		//测试数据自增
			ArrayWrite[1] ++;
			
			BKP_WriteBackupRegister(BKP_DR1, ArrayWrite[0]);	//写入测试数据到备份寄存器
			BKP_WriteBackupRegister(BKP_DR2, ArrayWrite[1]);
			
			OLED_ShowHexNum(1, 3, ArrayWrite[0], 4);		//显示写入的测试数据
			OLED_ShowHexNum(1, 8, ArrayWrite[1], 4);
		}
		
		ArrayRead[0] = BKP_ReadBackupRegister(BKP_DR1);		//读取备份寄存器的数据
		ArrayRead[1] = BKP_ReadBackupRegister(BKP_DR2);
		
		OLED_ShowHexNum(2, 3, ArrayRead[0], 4);				//显示读取的备份寄存器数据
		OLED_ShowHexNum(2, 8, ArrayRead[1], 4);
	}
}

3.2 实时时钟

RTC配置步骤

开启PWR和BKP的时钟:使能对BKP和RTC的访问。

启动RTC时钟:使用RCC模块函数设置LSE(低功耗模式下使用,默认是关闭的)作为系统时钟。

配置RTCCLK数据选择器:使用RCC模块函数,指定LSE为RTCCLK。

调用等待函数:等待同步以及等待上一次操作完成。

配置预分频器:设置PRL重装寄存器为一个合适的分频值,确保输出给计数器的频率是1Hz。

配置CNT值:给RTC设置一个初始时间。如果需要闹钟,可以配置闹钟值。

配置中断:如果需要中断,可以进行相关中断部分的配置。

3.2.1 MyRTC.c

#include "stm32f10x.h"                  // Device header
#include <time.h>

uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55};	//定义全局的时间数组,数组内容分别为年、月、日、时、分、秒

void MyRTC_SetTime(void);				//函数声明

//RTC初始化
void MyRTC_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);		//开启PWR的时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);		//开启BKP的时钟
	
	/*备份寄存器访问使能*/
	PWR_BackupAccessCmd(ENABLE);							//使用PWR开启对备份寄存器的访问
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)			//通过写入备份寄存器的标志位,判断RTC是否是第一次配置
															//if成立则执行第一次的RTC配置
	{
		RCC_LSEConfig(RCC_LSE_ON);							//开启LSE时钟
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);	//等待LSE准备就绪
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);				//选择RTCCLK来源为LSE
		RCC_RTCCLKCmd(ENABLE);								//RTCCLK使能
		
		RTC_WaitForSynchro();								//等待同步
		RTC_WaitForLastTask();								//等待上一次操作完成
		
		RTC_SetPrescaler(32768 - 1);						//设置RTC预分频器,预分频后的计数频率为1Hz
		RTC_WaitForLastTask();								//等待上一次操作完成
		
		MyRTC_SetTime();									//设置时间,调用此函数,全局数组里时间值刷新到RTC硬件电路
		
		BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);			//在备份寄存器写入自己规定的标志位,用于判断RTC是不是第一次执行配置
	}
	else													//RTC不是第一次配置
	{
		RTC_WaitForSynchro();								//等待同步
		RTC_WaitForLastTask();								//等待上一次操作完成
	}
}

//如果LSE无法起振导致程序卡死在初始化函数中
//可将初始化函数替换为下述代码,使用LSI当作RTCCLK
//LSI无法由备用电源供电,故主电源掉电时,RTC走时会暂停
/* 
void MyRTC_Init(void)
{
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
	
	PWR_BackupAccessCmd(ENABLE);
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)
	{
		RCC_LSICmd(ENABLE);
		while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();
		RTC_WaitForLastTask();
		
		RTC_SetPrescaler(40000 - 1);
		RTC_WaitForLastTask();
		
		MyRTC_SetTime();
		
		BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
	}
	else
	{
		RCC_LSICmd(ENABLE);				//即使不是第一次配置,也需要再次开启LSI时钟
		while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();
		RTC_WaitForLastTask();
	}
}*/

/**
  * 函    数:RTC设置时间
  * 说    明:调用此函数后,全局数组里时间值将刷新到RTC硬件电路
  */
void MyRTC_SetTime(void)
{
	time_t time_cnt;		//定义秒计数器数据类型
	struct tm time_date;	//定义日期时间数据类型
	
	time_date.tm_year = MyRTC_Time[0] - 1900;		//将数组的时间赋值给日期时间结构体
	time_date.tm_mon = MyRTC_Time[1] - 1;
	time_date.tm_mday = MyRTC_Time[2];
	time_date.tm_hour = MyRTC_Time[3];
	time_date.tm_min = MyRTC_Time[4];
	time_date.tm_sec = MyRTC_Time[5];
	
	time_cnt = mktime(&time_date) - 8 * 60 * 60;	//调用mktime函数,将日期时间转换为秒计数器格式
													//- 8 * 60 * 60为东八区的时区调整
	
	RTC_SetCounter(time_cnt);						//将秒计数器写入到RTC的CNT中
	RTC_WaitForLastTask();							//等待上一次操作完成
}

/**
  * 函    数:RTC读取时间
  * 说    明:调用此函数后,RTC硬件电路里时间值将刷新到全局数组
  */
void MyRTC_ReadTime(void)
{
	time_t time_cnt;		//定义秒计数器数据类型
	struct tm time_date;	//定义日期时间数据类型
	
	time_cnt = RTC_GetCounter() + 8 * 60 * 60;		//读取RTC的CNT,获取当前的秒计数器
													//+ 8 * 60 * 60为东八区的时区调整
	
	time_date = *localtime(&time_cnt);				//使用localtime函数,将秒计数器转换为日期时间格式
	
	MyRTC_Time[0] = time_date.tm_year + 1900;		//将日期时间结构体赋值给数组的时间
	MyRTC_Time[1] = time_date.tm_mon + 1;
	MyRTC_Time[2] = time_date.tm_mday;
	MyRTC_Time[3] = time_date.tm_hour;
	MyRTC_Time[4] = time_date.tm_min;
	MyRTC_Time[5] = time_date.tm_sec;
}

3.2.2 MyRTC.h

#ifndef __MYRTC_H
#define __MYRTC_H

extern uint16_t MyRTC_Time[];

void MyRTC_Init(void);
void MyRTC_SetTime(void);
void MyRTC_ReadTime(void);

#endif

3.2.3 main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	MyRTC_Init();		//RTC初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "Date:XXXX-XX-XX");
	OLED_ShowString(2, 1, "Time:XX:XX:XX");
	OLED_ShowString(3, 1, "CNT :");
	OLED_ShowString(4, 1, "DIV :");
	
	while (1)
	{
		MyRTC_ReadTime();							//RTC读取时间,最新的时间存储到MyRTC_Time数组中
		
		OLED_ShowNum(1, 6, MyRTC_Time[0], 4);		//显示MyRTC_Time数组中的时间值,年
		OLED_ShowNum(1, 11, MyRTC_Time[1], 2);		//月
		OLED_ShowNum(1, 14, MyRTC_Time[2], 2);		//日
		OLED_ShowNum(2, 6, MyRTC_Time[3], 2);		//时
		OLED_ShowNum(2, 9, MyRTC_Time[4], 2);		//分
		OLED_ShowNum(2, 12, MyRTC_Time[5], 2);		//秒
		
		OLED_ShowNum(3, 6, RTC_GetCounter(), 10);	//显示32位的秒计数器
		OLED_ShowNum(4, 6, RTC_GetDivider(), 10);	//显示余数寄存器
	}
}

06-23 10:20