CSDN成就一亿技术人                                   

目录                

一.再谈构造函数

1.构造函数体赋值:

在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。如下:

2.初始化列表:

3.explicit关键字:

二.Static成员

概念:

特性:

三.友元

友元函数:

友元类:

四.内部类

五.扩充

一.匿名对象

二.拷贝对象时的一些编译器优化

三.再次理解封装


 

一.再谈构造函数

1.构造函数体赋值:

在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。如下:

class Date
{
public:
	Date(int year, int month, int day)
	{
		_year = year;
		_month = month;
		_day = day;
	}
private:
	int _year;
	int _month;
	int _day;
};

虽然上述构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对象中成员变量的初始化,构造函数体中的语句只能将其称为赋初值,而不能称作初始化,因为初始化只能初始化一次,而构造函数体内可以多次赋值

 

2.初始化列表:

初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后跟一个放在括号中的初始值或表达式。如下代码:

class Date
{
public:
	Date(int year, int month, int day)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
private:
	int _year;
	int _month;
	int _day;
};

注意:

  1. 每个成员变量在初始化列表中只能出现一次(初始化只能初始化一次)
  2. 类中包含以下成员,必须放在初始化列表位置进行初始化: 引用成员变量,const成员变量,自定义类型成员(且该类没有默认构造函数时)
    class A
    {
    public:
    	A(int a)
    		:_a(a)
    	{}
    private:
    	int _a;
    };
    class B
    {
    public:
    	B(int a, int ref)
    		:_aobj(a)
    		, _ref(ref)
    		, _n(10)
    	{}
    private:
    	A _aobj;  // 没有默认构造函数
    	int& _ref;  // 引用
    	const int _n; // const 
    };
  3. 尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对自定义类型成员变量,一定会先使用初始化列表初始化。
    class Time
    {
    public:
    	Time(int hour = 0)
    		:_hour(hour)
    	{
    		cout << "Time()" << endl;
    	}
    private:
    	int _hour;
    };
    class Date
    {
    public:
    	Date(int day)
    	{}
    private:
    	int _day;
    	Time _t;
    };
    int main()
    {
    	Date d(1);
    }
  4. 成员变量在类中声明次序就是其在初始化列表中的初始顺序,与其在初始化列表中的先后次序无关。

 

3.explicit关键字:

构造函数不仅可以构造与初始化对象,对于单个参数或者第一个参数无默认值其余均有默认值的构造函数,还具有类型转换的作用。

 

二.Static成员

概念:

声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用static修饰成员函数,称之为静态成员函数静态成员变量一定要在类外进行初始化。如下程序计算了程序中创建出了多少个类对象。

class A
{
public:
	A() { ++_scount; }
	A(const A& t) { ++_scount; }
	~A() { --_scount; }
	static int GetACount() { return _scount; }
private:
	static int _scount;
};
int A::_scount = 0;
void TestA()
{
	cout << A::GetACount() << endl;
	A a1, a2;
	A a3(a1);
	cout << A::GetACount() << endl;
}

特性:

  1. 静态成员所有类对象所共享,不属于某个具体的对象,存放在静态区。
  2. 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明
  3. 类静态成员即可用类名::静态成员 或者 对象.静态成员来访问
  4. 静态成员函数没有隐藏的this指针,不能访问任何非静态成员
  5. 静态成员也是类的成员,受public,protected,private访问限定符的限制

 

三.友元

友元提供了一种突破封装的方式,有时提供了便利,但是友元会增加耦合度,破坏了封装,所以友元不应该过多使用。

友元函数:

问题:尝试去重载operator<<,然后发现没法将operator<<重载成成员函数,因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置,this指针默认时第一个参数也就是左操作数了,但是实际使用中cout需要是第一个形参对象,才能正常使用,所以要将operator<<重载成全局函数,但又会导致类外没办法访问成员,此时就需要友元来解决,operator>>同理。

class Date
{
public:
	Date(int year, int month, int day)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
	// d1 << cout; -> d1.operator<<(&d1, cout); 不符合常规调用
// 因为成员函数第一个参数一定是隐藏的this,所以d1必须放在<<的左侧
	ostream& operator<<(ostream& _cout)
	{
		_cout << _year << "-" << _month << "-" << _day << endl;
		return _cout;
	}
private:
	int _year;
	int _month;
	int _day;
};

友元函数可以直接访问类的私有成员,它是定义在类外普通函数,不属于任何类,但需要再类的内部声明,声明时需要加friend关键字。

class Date
{
	friend ostream& operator<<(ostream& _cout, const Date& d);
	friend istream& operator>>(istream& _cin, Date& d);
public:
	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
private:
	int _year;
	int _month;
	int _day;
};
ostream& operator<<(ostream& _cout, const Date& d)
{
	_cout << d._year << "-" << d._month << "-" << d._day;
	return _cout;
}
istream& operator>>(istream& _cin, Date& d)
{
	_cin >> d._year;
	_cin >> d._month;
	_cin >> d._day;
	return _cin;
}
int main()
{
	Date d;
	cin >> d;
	cout << d << endl;
	return 0;
}
  • 友元函数可以访问类的私有和保护成员,但不是类的成员函数
  • 友元函数不能用const修饰
  • 友元函数可以在类定义的任何地方声明,不受类访问限定符限制
  • 一个函数可以是多个类的友元函数
  • 友元函数的调用域普通函数的调用原理相同

友元类:

友元类的所有成员函数可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。

  • 友元关系是单向的,不具有交换性。比如上述Time类和Date类中声明Date类为其友元类,那么可以再Date类中直接访问Time类的私有成员变量,但想在Time类中访问Date类中私有成员变量则不行。
  • 友元关系不能传递。如果A是B的友元,B是C的友元,则不能说明A是C的友元。
  • 友元关系不能继承。
class Time
{
    friend class Date;   // 声明日期类为时间类的友元类,则在日期类中就直接访问Time类中的私有成员变量
public:
    Time(int hour = 0, int minute = 0, int second = 0)
        : _hour(hour)
        , _minute(minute)
        , _second(second)
    {}

private:
    int _hour;
    int _minute;
    int _second;
};
class Date
{
public:
    Date(int year = 1900, int month = 1, int day = 1)
        : _year(year)
        , _month(month)
        , _day(day)
    {}

    void SetTimeOfDate(int hour, int minute, int second)
    {
        // 直接访问时间类私有的成员变量
        _t._hour = hour;
        _t._minute = minute;
        _t._second = second;
    }

private:
    int _year;
    int _month;
    int _day;
    Time _t;
};

 

四.内部类

概念:如果一个类定义在另一个类的内部,这个内部类就叫做内部类,内部类是一个独立的类,他不属于外部类,更不能通过外部类的对象去访问内部类的成员,外部类对内部类没有任何优越的访问权限。

注意:内部类就是外部类的友元类,参见友元类的第一,内部类可以通过外部类的对象参数来访问外部类中的所有成员,但是外部类不是内部类的友元。

特性:

  1. 内部类可以定义在外部类的public,protected,private都是可以。
  2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名。
  3. sizeof(外部类)=外部类,和内部类没有任何关系。
class A
{
private:
	static int k;
	int h;
public:
	class B // B天生就是A的友元
	{
	public:
		void foo(const A& a)
		{
			cout << k << endl;//OK
			cout << a.h << endl;//OK
		}
	};
};
int A::k = 1;
int main()
{
	A::B b;
	b.foo(A());

	return 0;
}

 

五.扩充

1.匿名对象

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};
class Solution {
public:
	int Sum_Solution(int n) {
		//...
		return n;
	}
};
int main()
{
	A aa1;
	// 不能这么定义对象,因为编译器无法识别下面是一个函数声明,还是对象定义
	//A aa1();
	// 但是我们可以这么定义匿名对象,匿名对象的特点不用取名字,
	// 但是他的生命周期只有这一行,我们可以看到下一行他就会自动调用析构函数
	A();
	A aa2(2);
	// 匿名对象在这样场景下就很好用,当然还有一些其他使用场景,这个我们以后遇到了再说
	Solution().Sum_Solution(10);
	return 0;
}

 

2.拷贝对象时的一些编译器优化

在传参和传返回值的过程中,一般编译器会做一些优化,减少对象的拷贝,这个在一些场景下还是很有用的。

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}
	A(const A& aa)
		:_a(aa._a)
	{
		cout << "A(const A& aa)" << endl;
	}
	A& operator=(const A& aa)
	{
		cout << "A& operator=(const A& aa)" << endl;
		if (this != &aa)
		{
			_a = aa._a;
		}
		return *this;
	}
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};
void f1(A aa)
{}
A f2()
{
	A aa;
	return aa;
}
int main()
{
	// 传值传参
	A aa1;
	f1(aa1);
	cout << endl;
	// 传值返回
	f2();
	cout << endl;
	// 隐式类型,连续构造+拷贝构造->优化为直接构造
	f1(1);
	// 一个表达式中,连续构造+拷贝构造->优化为一个构造
	f1(A(2));
	cout << endl;
	// 一个表达式中,连续拷贝构造+拷贝构造->优化一个拷贝构造
	A aa2 = f2();
	cout << endl;
	// 一个表达式中,连续拷贝构造+赋值重载->无法优化
	aa1 = f2();
	cout << endl;
	return 0;
}

 

3.再次理解封装

在类和对象中,类是对某一类实体(对象)来进行描述的,描述该对象具有哪些属性,哪些方法,描述完成后就形成一种新的自定义类型,才用该自定义类型就可以实例化具体的对象。

 

 

 

 

 

 

03-24 11:40