文档操作 documents

创建数据(put)

向 user 索引下创建3条数据

PUT /user/_doc/1
{
  "name":"zhangsan",
  "age":18,
  "sex":"男",
  "info":"一顿操作猛如虎,一看工资2500",
  "tags":["计算机","运动","动漫"]
}
PUT /user/_doc/2
{
  "name":"kunkun",
  "age":3,
  "sex":"男",
  "info":"吉你实在实在太美",
  "tags":["唱","跳","篮球"]
}
PUT /user/_doc/3
{
  "name":"lisi",
  "age":66,
  "sex":"女",
  "info":"清晨下的第一杯水",
  "tags":["a","b","c"]
}

es文档操作命令-LMLPHP

当执行命令时,如果数据不存在,则新增该条数据,如果数据存在则修改该条数据。

获取数据(get)

# get 索引名/类型名/id
GET /user/_doc/1

结果:

{
  "_index" : "user",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 2,
  "_seq_no" : 3,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "zhangsan",
    "age" : 18,
    "sex" : "男",
    "info" : "一顿操作猛如虎,一看工资2500",
    "tags" : [
      "计算机",
      "运动",
      "动漫"
    ]
  }
}

更新数据(update)

覆盖更新(put)

PUT /user/_doc/1
{
  # 更新的数据
  "name":"wangwu"  
}

结果:

{
  "_index" : "user",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 2,			// 代表数据更改的次数
  "result" : "updated",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 6,
  "_primary_term" : 1
}

es文档操作命令-LMLPHP

从结果中可以看到,我们更新的数据并不是更改了指定的字段,而是直接覆盖掉了原来的数据,这不符合我们的一般习惯,如果想要更新指定的字段,需要使用 post + _update 方式来更新

局部更新(post)

使用 post 命令,在 id 后面跟 _update,要修改的内容放到 doc 文档中即可。

POST /user/_doc/3/_update
{
  "doc":{
    "name":"zhangsan"
  }
}

结果:

#! Deprecation: [types removal] Specifying types in document update requests is deprecated, use the endpoint /{index}/_update/{id} instead.
{
  "_index" : "user",
  "_type" : "_doc",
  "_id" : "3",
  "_version" : 2,
  "result" : "updated",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 7,
  "_primary_term" : 1
}

es文档操作命令-LMLPHP

条件查询

使用 GET 命令,后加上_search?q=要查询的条件

# get /索引名/文档名/_search查询条件
GET /user/_doc/_search?q=name:zhangsan

结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.9808291,
    "hits" : [
      {
        "_index" : "user",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.9808291,
        "_source" : {
          "name" : "zhangsan",
          "age" : 66,
          "sex" : "女",
          "info" : "清晨下的第一杯水",
          "tags" : [
            "a",
            "b",
            "c"
          ]
        }
      }
    ]
  }
}

我们看一下结果 返回并不是 数据本身,是给我们了一个 hits ,还有 _score 得分,就是根据算法算出和查询条件匹配度高得分就搞。

这里的查询是模糊查询,并会根据 ik 分词器进行匹配,但由于我们查询的字段name的类型是keyword(不可分词),故必须要精确匹配才能查询到

03-22 00:57