一、代码
import config
import torch
import numpy as np
device = 'cpu'
# ------------------------------------------------------#
# 创建你的模型
# ------------------------------------------------------#
model = YourModel()
if 0:
weights_init(model)
# ------------------------------------------------------#
# 预训练权值加载流程:
# model_dict, pretrained_dict
# -> temp_dict(pretrained_dict与model_dict匹配上的)
# -> model_dict(load_state_dict加载)
# -> print result
# ------------------------------------------------------#
pretrained_weights = 'logs/best_ckpt.pth'
if pretrained_weights != '':
# ------------------------------------------------------#
# 预训练权值文件
# ------------------------------------------------------#
print('Load weights {}.'.format(pretrained_weights))
# ----------------------#
# 模型的key
# ----------------------#
model_dict = model.state_dict()
# ----------------------#
# 预训练权重的Key
# ----------------------#
checkpoint = torch.load(pretrained_weights, map_location=device)
pretrained_dict = checkpoint['model_state_dict']
# ----------------------#
# temp_dict用来更新model_dict
# load_key, no_load_key,用来记录哪些是加载了的
# ----------------------#
load_key, no_load_key, temp_dict = [], [], {}
for k, v in pretrained_dict.items():
if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
temp_dict[k] = v
load_key.append(k)
else:
no_load_key.append(k)
# ----------------------#
# temp_dict用来更新model_dict
# ----------------------#
model_dict.update(temp_dict)
model.load_state_dict(model_dict)
# ------------------------------------------------------#
# 打印没有匹配上的Key
# ------------------------------------------------------#
print("\nSuccessful Load Key:", str(load_key)[:500], "……\nSuccessful Load Key Num:", len(load_key))
print("\nFail To Load Key:", str(no_load_key)[:500], "……\nFail To Load Key num:", len(no_load_key))
print("\n\033[1;33;44m温馨提示,head部分没有载入是正常现象,Backbone部分没有载入是错误的。\033[0m")
运行结果