摘要

本文介绍我自研的下采样模块。本次改进的下采样模块是一种通用的改进方法,你可以用分类任务的主干网络中,也可以用在分割和超分的任务中。已经有粉丝用来改进ConvNext模型,取得了非常好的效果,配合一些其他的改进,发一篇CVPR、ECCV之类的顶会完全没有问题。

本次我将这个模块用来改进YoloV5,实现大幅度涨点。

自研下采样模块及其变种

第一种改进方法

将输入分成两个分支,一个分支用卷积,一个分支分成两部分,一部分用MaxPool,一部分用AvgPool。然后,在最后合并起来。代码如下:

import torch
import torch.nn as nn

def autopad(k, p=None, d=
04-13 19:36