用A*算法求解八数码问题

实现两种启发函数

采取两种策略实现启发函数:

  • 策略1:不在目标位置的数字个数
  • 策略2:曼哈顿距离(将数字直接移动到对应位置的步数总数)
# 策略1: 不在目标位置的数字个数,即 state 与 goal_state 不相同的数字个数
def h1(state, goal_state):
    '''
    state, goal_state - 3x3 list
    '''
    distance = 0
    for i in range(3):
        for j in range(3):
            if state[i][j] != goal_state[i][j] and state[i][j] != 0:
                distance += 1
    
    return distance

# 功能性函数,用于查找给定数字 num 在 goal_state 中的坐标
def find_num(num, goal_state):
    for i in range(3):
        for j in range(3):
            if goal_state[i][j] == num:
                return i, j
    return -1, -1


# 策略2: 曼哈顿距离之和
def h2(state, goal_state):
    '''
    state, goal_state - 3x3 list
    '''
    distance = 0
    for i in range(3):
        for j in range(3):
            if state[i][j] == 0:
                continue
            if state[i][j] == goal_state[i][j]:
                continue
            goal_i, goal_j = find_num(state[i][j], goal_state)
            distance += abs(i - goal_i) + abs(j - goal_j)
    
    return distance


# 测试
start_state = [
    [2, 8, 3],
    [1, 6, 4],
    [7, 0, 5]
]

goal_state = [
    [1, 2, 3],
    [8, 0, 4],
    [7, 6, 5]
]

# 不在目标位置的数字:1、2、8、6,共 4 个
# 1 需移动 1 步到达正确位置
# 2 需移动 1 步到达正确位置
# 8 需移动 2 步到达正确位置
# 6 需移动 1 步到达正确位置
# 曼哈顿距离共 5 步

print(h1(start_state, goal_state))  # 4
print(h2(start_state, goal_state))  # 5

实现A*算法

为了便于替换启发函数,将其作为参数传入函数:

# 定义A*算法函数
def astar(start_state, goal_state, h):
    '''
    params:
        start_state - 3x3 list 初始状态
        goal_state  - 3x3 list 目标状态
        h           - function 启发函数
    returns:
        expanded_nodes - 扩展节点数
        run_time       - 算法运行时间
        path           - 算法运行路径
    
    ps. 当路径不存在时,会返回 run_time = 0, path = None
    '''

    start_time = time.time()  # 算法开始

    open_list = [(h(start_state, goal_state), start_state)]  # 存储待扩展的节点的优先队列
    closed_set = set()  # 存储已经扩展过的节点的集合
    came_from = {}      # 记录节点之间的关系,即每个节点的父节点是哪个节点
    expanded_nodes = 0  # 记录扩展节点的数量

    while open_list:  # 带扩展节点队列不为空
        _, current_state = heapq.heappop(open_list)  # 弹出优先级最高的节点
        expanded_nodes += 1

        if current_state == goal_state:  # 找到目标状态
            # 回溯路径
            path = [current_state]
            while tuple(map(tuple, current_state)) in came_from:
                current_state = came_from[tuple(map(tuple, current_state))]
                path.append(current_state)
            
            end_time = time.time()  # 记录算法结束时间
            return expanded_nodes, end_time-start_time, path[::-1]
        

        closed_set.add(tuple(map(tuple, current_state)))  # 将当前节点状态加入已扩展节点集合

        zero_i, zero_j = find_num(0, current_state)  # 找到当前的空格坐标

        
        moves = [(0, 1), (0, -1), (1, 0), (-1, 0)]  # 四周的格子
        for di, dj in moves:
            new_i, new_j = zero_i + di, zero_j + dj  # 移动的数字
            if 0 <= new_i < 3 and 0 <= new_j < 3:  # 确保新位置在范围内
                new_state = [row[:] for row in current_state]  # 拷贝 current_state
                new_state[zero_i][zero_j], new_state[new_i][new_j] = current_state[new_i][new_j], current_state[zero_i][zero_j]  # 移动空白格

                if tuple(map(tuple, new_state)) in closed_set:
                    continue  # 如果新状态已经扩展过,则跳过

                new_cost = len(came_from) + 1 + h(new_state, goal_state)  # 计算新状态的代价
                heapq.heappush(open_list, (new_cost, new_state))  # 将新状态加入优先队列
                came_from[tuple(map(tuple, new_state))] = tuple(map(tuple, current_state))  # 更新新状态的父节点信息

    # 无可行解
    return expanded_nodes, 0, None

测试

首先,定义一个函数 print_path() 用于查看路径:

def print_path(path):
    step = 0
    for state in path:
        print("Step. ", step)
        for row in state:
            print(row)
        step += 1

设置初始状态和目标状态进行测试:

# 设置初始状态和目标状态
start_state = [
    [2, 8, 3],
    [1, 6, 4],
    [7, 0, 5]
]

goal_state = [
    [1, 2, 3],
    [8, 0, 4],
    [7, 6, 5]
]

h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法

if h1_path:
    print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))
    # print_path(h1_path)
else:
    print("调用 h1 启发函数的 A* 算法无法得到可行解。")

# print("=" * 50)
if h2_path:
    print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))
    # print_path(h2_path)
else:
    print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法共扩展 28 个节点,耗时 0.00037217140197753906s,路径如下:
调用 h2 启发函数的 A* 算法共扩展 17 个节点,耗时 0.0002200603485107422s,路径如下:

测试鲁棒性——当可行解不存在时:

# 设置初始状态和目标状态
start_state = [
    [7, 8, 3],
    [1, 5, 2],
    [6, 0, 4]
]

goal_state = [
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
]

h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法

if h1_path:
    print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))
    # print_path(h1_path)
else:
    print("调用 h1 启发函数的 A* 算法无法得到可行解。")

# print("=" * 50)
if h2_path:
    print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))
    # print_path(h2_path)
else:
    print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法无法得到可行解。
调用 h2 启发函数的 A* 算法无法得到可行解。
03-11 23:34