llama2学习-预训练+SFT指令微调


本文记录了llama2从预训练到指令微调的全过程,单文件形式,供入门阶段查阅

一.代码

import os
import torch
import random
import numpy as np
import math
import inspect
from dataclasses import dataclass
from typing import Optional, Tuple
import torch.nn.functional as F
from torch import nn
from torch.utils.data import Dataset
import json
from tqdm import tqdm
from tokenization_chatglm import ChatGLMTokenizer

'''
一.模型结构:
1.https://github.com/meta-llama/llama/blob/main/llama/model.py
2.https://github.com/DLLXW/baby-llama2-chinese/blob/main/model.py

二.数据集:        
Wiki中文百科:https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered/tree/main

三.中文Tokenizer:
1.https://huggingface.co/THUDM/chatglm2-6b/tree/main    
'''

class PretrainDataset(Dataset):
    '''预训练数据集'''
    def __init__(self,data_path_lst=['./wikipedia-cn-20230720-filtered.json'],max_length=256):
        super().__init__()
        self.pretrain_tokens_cache_path="tokens.bin"
        self.prepare_pretrain_dataset(data_path_lst) 
        with open(self.pretrain_tokens_cache_path,'r') as f:
            nbytes = f.seek(0,2)
            flen = f.tell() // np.dtype('uint16').itemsize
        self.data = np.memmap(data_path_lst[0],dtype=np.dtype('uint16'),shape=(flen//max_length,max_length))
        print("downloading finished.....")

    def prepare_pretrain_dataset(self,data_path_lst):
        '''数据预处理,提前生成好token'''

        if os.path.exists(self.pretrain_tokens_cache_path):
            return        
        tokenizer = ChatGLMTokenizer(vocab_file='./tokenizer.model')
        doc_ids=[]
        for _path in data_path_lst:
            with open(_path,'r',encoding='utf-8') as f:
                data=json.load(f)            
            for line in tqdm(data):
                text=line['completion']
                text_id=tokenizer.encode(text,add_special_tokens=False)
                text_id.append(tokenizer.special_tokens['<eos>'])
                if len(text_id)>5:
                    doc_ids+=text_id
        arr = np.array(doc_ids,dtype=np.uint16)
        with open(self.pretrain_tokens_cache_path,'wb') as f:
            f.write(arr.tobytes())
        print("pretrain data finished:{}".format(arr.shape))

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index: int):
        '''训练模型根据之前的输入,预测下一个。如,原句子是12345,输入模型1234,让模型输出2345'''
        sample = self.data[index]
        X=np.array(sample[:-1]).astype(np.int64)
        Y=np.array(sample[1:]).astype(np.int64)        
        return torch.from_numpy(X),torch.from_numpy(Y)

class SFTDataset(Dataset):
    '''SFT数据集'''
    def __init__(self,max_length=256
                 ,prompt_max_len=128
                 ,answer_max_len=128):
        super().__init__()
        self.max_length = max_length
        self.prompt_max_len = prompt_max_len
        self.answer_max_len = answer_max_len
        with open('./alpaca_gpt4_data_zh.json', 'r', encoding='utf-8') as f:
            data = json.load(f)
        self.q_lst = []
        self.a_lst = []
        for per in data:
            q = per['instruction']
            i = per['input']
            a = per['output']
            q = q + i
            if len(q) < 10 or len(a) < 5:
                continue
            if len(q) > 256 or len(a) > 256:
                continue
            self.q_lst.append(q)
            self.a_lst.append(a)
        self.tokenizer = ChatGLMTokenizer(vocab_file='./tokenizer.model')
        self.bos=self.tokenizer.special_tokens['<bos>']
        self.eos=self.tokenizer.special_tokens['<eos>']
        self.pad=0#self.tokenizer.special_tokens['<pad>']

    def __len__(self):
        return len(self.q_lst)

    def __getitem__(self, index: int):
        '''将输入和答案拼接在一起,做为模型的输入,loss只计算答案部分(通过mask实现)'''
        prompt = self.tokenizer.encode(self.q_lst[index],add_special_tokens=False)
        answer = self.tokenizer.encode(self.a_lst[index],add_special_tokens=False)

        if len(prompt) > self.prompt_max_len:
            prompt = prompt[:self.prompt_max_len-2]
        if len(answer) > self.answer_max_len:
            answer = answer[:self.answer_max_len-2]
        
        input_id=prompt+[self.bos]+answer+[self.eos]
        context_length = input_id.index(self.bos)
        mask_position = context_length - 1
        pad_len = self.max_length - len(input_id)
        input_id = input_id + [self.pad] * pad_len
        if pad_len==0:
            loss_mask = [0]*context_length+[1]*(len(input_id[mask_position+1:])) + [0]*pad_len
        else:
            loss_mask = [0]*context_length+[1]*(len(input_id[mask_position+1:-pad_len])) + [0]*pad_len
        
        input_id=np.array(input_id)
        X=np.array(input_id[:-1]).astype(np.int64)
        Y=np.array(input_id[1:]).astype(np.int64)
        loss_mask=np.array(loss_mask[:-1])

        return torch.from_numpy(X),torch.from_numpy(Y),torch.from_numpy(loss_mask)
    
@dataclass
class ModelArgs:
    dim: int = 4096
    n_layers: int = 32
    n_heads: int = 32
    n_kv_heads: Optional[int] = None
    vocab_size: int = -1  # defined later by tokenizer
    multiple_of: int = 256  # make SwiGLU hidden layer size multiple of large power of 2
    norm_eps: float = 1e-5
    max_seq_len: int = 2048
    dropout: float = 0.0

class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cos = torch.cos(freqs)  # real part
    freqs_sin = torch.sin(freqs)  # imaginary part
    return freqs_cos, freqs_sin

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cos: torch.Tensor,
    freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:

    # reshape xq and xk to match the complex representation
    xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
    xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)

    # reshape freqs_cos and freqs_sin for broadcasting
    freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
    freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
    # apply rotation using real numbers
    xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
    xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
    xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
    xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos

    # flatten last two dimensions
    xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
    xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)

    return xq_out.type_as(xq), xk_out.type_as(xk)

def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
    bs, slen, n_kv_heads, head_dim = x.shape
    if n_rep == 1:
        return x
    return (
        x[:, :, :, None, :]
        .expand(bs, slen, n_kv_heads, n_rep, head_dim)
        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
    )

class Attention(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
        model_parallel_size = 1
        self.n_local_heads = args.n_heads // model_parallel_size
        self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = args.dim // args.n_heads
        self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
        self.attn_dropout = nn.Dropout(args.dropout)
        self.resid_dropout = nn.Dropout(args.dropout)
        self.dropout = args.dropout

        # use flash attention or a manual implementation?
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        if not self.flash:
            print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
            mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
            mask = torch.triu(mask, diagonal=1)
            self.register_buffer("mask", mask)

    def forward(
        self,
        x: torch.Tensor,
        freqs_cos: torch.Tensor,
        freqs_sin: torch.Tensor,
    ):
        bsz, seqlen, _ = x.shape
        # QKV
        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        # RoPE relative positional embeddings
        xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)

        # grouped multiquery attention: expand out keys and values
        xk = repeat_kv(xk, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)
        xv = repeat_kv(xv, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)

        # make heads into a batch dimension
        xq = xq.transpose(1, 2)  # (bs, n_local_heads, seqlen, head_dim)
        xk = xk.transpose(1, 2)
        xv = xv.transpose(1, 2)

        # flash implementation
        if self.flash:
            output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
        else:
            # manual implementation
            scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
            assert hasattr(self, 'mask')
            scores = scores + self.mask[:, :, :seqlen, :seqlen]   # (bs, n_local_heads, seqlen, cache_len + seqlen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            scores = self.attn_dropout(scores)
            output = torch.matmul(scores, xv)  # (bs, n_local_heads, seqlen, head_dim)

        # restore time as batch dimension and concat heads
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)

        # final projection into the residual stream
        output = self.wo(output)
        output = self.resid_dropout(output)
        return output


class FeedForward(nn.Module):
    def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
        super().__init__()
        hidden_dim = int(2 * hidden_dim / 3)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))

class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, args: ModelArgs):
        super().__init__()
        self.n_heads = args.n_heads
        self.dim = args.dim
        self.head_dim = args.dim // args.n_heads
        self.attention = Attention(args)
        self.feed_forward = FeedForward(
            dim=args.dim,
            hidden_dim=4 * args.dim,
            multiple_of=args.multiple_of,
            dropout=args.dropout,
        )
        self.layer_id = layer_id
        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

    def forward(self, x, freqs_cos, freqs_sin):
        h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
        out = h + self.feed_forward.forward(self.ffn_norm(h))
        return out


class Transformer(nn.Module):
    last_loss: Optional[torch.Tensor]

    def __init__(self, params: ModelArgs):
        super().__init__()
        self.params = params
        self.vocab_size = params.vocab_size
        self.n_layers = params.n_layers

        self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
        self.dropout = nn.Dropout(params.dropout)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(params.n_layers):
            self.layers.append(TransformerBlock(layer_id, params))
        self.norm = RMSNorm(params.dim, eps=params.norm_eps)
        self.output = nn.Linear(params.dim, params.vocab_size, bias=False)

        # share the unembedding parameters with the embedding parameters
        self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying

        # some useful precompute for the RoPE relative positional embeddings
        freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
        self.register_buffer("freqs_cos", freqs_cos, persistent=False)
        self.register_buffer("freqs_sin", freqs_sin, persistent=False)

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))

        # Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
        self.last_loss = None

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)

        h = self.dropout(h)
        freqs_cos = self.freqs_cos[:seqlen]
        freqs_sin = self.freqs_sin[:seqlen]

        for layer in self.layers:
            h = layer(h, freqs_cos, freqs_sin)
        h = self.norm(h)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the output on the very last position
            logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
            self.last_loss = None

        return logits

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # start with all of the candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
        print(f"using fused AdamW: {use_fused}")

        return optimizer

    def estimate_mfu(self, fwdbwd_per_iter, dt):
        """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
        # first estimate the number of flops we do per iteration.
        # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
        N = sum(p.numel() for p in self.parameters())
        cfg = self.params
        L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len
        flops_per_token = 6*N + 12*L*H*Q*T
        flops_per_fwdbwd = flops_per_token * T
        flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
        # express our flops throughput as ratio of A100 bfloat16 peak flops
        flops_achieved = flops_per_iter * (1.0/dt) # per second
        flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
        mfu = flops_achieved / flops_promised
        return mfu

    #@torch.inference_mode()
    @torch.no_grad()
    def generate(self, idx, eos, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        Also note this is a super inefficient version of sampling with no key/value cache.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
            # forward the model to get the logits for the index in the sequence
            logits = self(idx_cond)
            logits = logits[:, -1, :] # crop to just the final time step
            if temperature == 0.0:
                # "sample" the single most likely index
                _, idx_next = torch.topk(logits, k=1, dim=-1)
            else:
                # pluck the logits at the final step and scale by desired temperature
                logits = logits / temperature
                # optionally crop the logits to only the top k options
                if top_k is not None:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')
                # apply softmax to convert logits to (normalized) probabilities
                probs = F.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)
            if idx_next==eos:
                break
        return idx

max_seq_len = 512
dim = 512
n_layers = 8
n_heads = 8
multiple_of = 32
dropout = 0.0
batch_size=8

def pretrain():
    #初始化随机种子,保证可复现
    random.seed(1)
    np.random.seed(1)
    torch.random.manual_seed(1)

    weight_decay = 1e-1
    learning_rate = 3e-4
    beta1 = 0.9
    beta2 = 0.95
    device = 'cuda'
    dtype = 'float16'

    model_args = dict(
        dim=dim,
        n_layers=n_layers,
        n_heads=n_heads,
        n_kv_heads=n_heads,
        vocab_size=64793,
        multiple_of=multiple_of,
        max_seq_len=max_seq_len,
        dropout=dropout,
    )

    gptconf = ModelArgs(**model_args)
    model = Transformer(gptconf)
    train_ds = PretrainDataset(max_length=max_seq_len)
    if os.path.exists("weight.pth"):
        state_dict = torch.load("weight.pth", map_location=device)
        model.load_state_dict(state_dict,True)
        print("load checkpoint")

    train_loader = torch.utils.data.DataLoader(
        train_ds,
        batch_size=batch_size,
        pin_memory=False,
        drop_last=False,
        shuffle=False
    )
    grad_clip=1.0
    model.to(device)    
    if True:
        optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), "cpu")
        scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
        for epoch in range(10000):
            for i, (X, Y) in enumerate(train_loader):
                X=X.to(device)
                Y=Y.to(device)    
                with torch.cuda.amp.autocast():
                    pred = model(X, Y)
                    loss = model.last_loss

                scaler.scale(loss).backward()

                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)

                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad(set_to_none=True)

                if i % 32 == 0:
                    lr = optimizer.param_groups[0]['lr']
                    print("epoch:{:02d} iter:{:04d} lr:{:0.5f} loss:{:.6f} ".format(epoch, i, lr, loss.item()))

            model.eval()
            torch.save(model.state_dict(),'pretrain.pth')
    else:
        optimizer = model.configure_optimizers(weight_decay, 0.0001, (beta1, beta2), "cpu")
        model=model.half()
        for epoch in range(10):
            for i, (X, Y) in enumerate(train_loader):
                X=X.to(device)
                Y=Y.to(device)    
                pred = model(X, Y)
                loss = model.last_loss
                optimizer.zero_grad()
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
                optimizer.step()
                if i % 32 == 0:
                    lr = optimizer.param_groups[0]['lr']
                    print("epoch:{:02d} iter:{:04d} lr:{:0.5f} loss:{:.6f} ".format(epoch, i, lr, loss.item()))
                #if i%1000==0:
                #    model.eval()
                #    torch.save(model.state_dict(),'pretrain.pth')

def sft_train():
    #初始化随机种子,保证可复现
    random.seed(1)
    np.random.seed(1)
    torch.random.manual_seed(1)

    weight_decay = 1e-1
    learning_rate = 3e-4
    beta1 = 0.9
    beta2 = 0.95
    device = 'cuda'
    dtype = 'float16'

    model_args = dict(
        dim=dim,
        n_layers=n_layers,
        n_heads=n_heads,
        n_kv_heads=n_heads,
        vocab_size=64793,
        multiple_of=multiple_of,
        max_seq_len=max_seq_len,
        dropout=dropout,
    )

    gptconf = ModelArgs(**model_args)
    model = Transformer(gptconf)
    train_ds = SFTDataset(max_length=max_seq_len)
    if os.path.exists("pretrain.pth"):
        state_dict = torch.load("pretrain.pth", map_location=device)
        model.load_state_dict(state_dict,True)
        print("load checkpoint")

    train_loader = torch.utils.data.DataLoader(
        train_ds,
        batch_size=batch_size,
        pin_memory=False,
        drop_last=False,
        shuffle=False
    )
    grad_clip=1.0
    model.to(device)    
    if True:
        optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), "cpu")
        scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
        for epoch in range(10000):
            for i, (X, Y,loss_mask) in enumerate(train_loader):
                X=X.to(device)
                Y=Y.to(device) 
                loss_mask=loss_mask.to(device)

                with torch.cuda.amp.autocast():
                    logits = model(X, Y)
                    loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0,reduce=False)
                    loss_mask = loss_mask.view(-1)
                    loss = torch.sum(loss*loss_mask)/loss_mask.sum()

                scaler.scale(loss).backward()

                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)

                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad(set_to_none=True)

                if i % 32 == 0:
                    lr = optimizer.param_groups[0]['lr']
                    print("epoch:{:02d} iter:{:04d} lr:{:0.5f} loss:{:.6f} ".format(epoch, i, lr, loss.item()))

            model.eval()
            torch.save(model.state_dict(),'sft.pth')

if __name__=="__main__":
    #pretrain()
    sft_train()

二.参考

04-04 01:44