简介

首先来了解一下 学习 onnx 架构和 onnx helper 的使用的目的。

模型推理部分是指利用 tensorRT 的 onnx 解析器编译生成 engine (即转换为tensorRT能看懂的模型)。

1、有些时候我们应该把后处理部分在onnx模型中实现,降低后处理复杂度。
比如说yolov5的后处理中,要借助anchor要做一些乘加的操作,如果我们单独分开在后处理中去做的话,你就会发现你既要准备一个模型,还得专门储存这个模型的anchor的信息,这样代码的复杂度就很高,后处理的逻辑就会非常麻烦。所以把后处理的逻辑尽量得放在模型里面,使得它的tensor很简单通过decode就能实现。然后自己做的后处理性能可能还不够高,如果放到onnx里,tensorRT顺便还能帮你加速一下。

很多时候我们onnx已经导出来了,如果我还想去实现onnx后处理的增加,该怎么做呢? 有两种做法,一种是直接用onnx这个包去操作onnx文件,去增加一些节点是没有问题的,但这个难度系数比较高。第二种做法是可以用pytorch去实现后处理逻辑的代码,把这个后处理专门导出一个onnx,然后再把这个onnx合并到原来的onnx上,这也是实际上我们针对复杂任务专门定制的一个做法。

2、还有些时候我们无法直接用pytorch的export_onnx函数导出onnx,这个时候就要自己构建一个onnx 了。
比如 bevfusion的 spconv 部分,利用 onnx.helper() 自己构建一个onnx,然后再转 tensorrt

这些场景都需要自己理解、解析和构建 onnx。

一、onnx 的架构

首先我们来理解一下 onnx 的架构:ONNX是一种神经网络的格式,采用Protobuf (Protocal Buffer。是Google提出来的一套表示和序列化数据的机制) 二进制形式进行序列化模型。Protobuf会根据用于定义的数据结构来进行序列化存储。我们可以根据官方提供的数据结构信息,去修改或者创建onnx。onnx的各类proto的定义需要看官方文档 (https://github.com/onnx/onnx/tree/main)。这里面的onnx/onnx.in.proto定义了所有onnx的Proto 。

大概 总结 onnx 中的组织结构 如下:

下面我们根据总结的组织结构信息,来实践创建几个 onnx 。

二、onnx 实践

2.1、 create - linear.onnx

总体程序如下:

import onnx
from onnx import helper
from onnx import TensorProto

def create_onnx():
    # 创建ValueProto
    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [10, 10])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 10])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 10])

    # 创建NodeProto
    mul = helper.make_node('Mul', ['a', 'x'], 'c', "multiply")
    add = helper.make_node('Add', ['c', 'b'], 'y', "add")

    # 构建GraphProto
    graph = helper.make_graph([mul, add], 'sample-linear', [a, x, b], [y])

    # 构建ModelProto
    model = helper.make_model(graph)

    # 检查model是否有错误
    onnx.checker.check_model(model)
    # print(model)

    # 保存model
    onnx.save(model, "sample-linear.onnx")

    return model

if __name__ == "__main__":
    model = create_onnx()

程序执行完会出现一个 sample-linear.onnx ,节点图如下。下面我们来看看程序里面的细节。
模型部署 - onnx的导出和分析 - onnx 的架构和 onnx helper 的使用 - 学习记录-LMLPHP)

2.1.1、要点一:创建节点

使用 helper.make_node 创建节点 (图中的黑色部分 'Mul','Add'

我们用下面两句话创建两个节点。

 # 创建NodeProto
    mul = helper.make_node('Mul', ['a', 'x'], 'c', "multiply")
    add = helper.make_node('Add', ['c', 'b'], 'y', "add")

函数对应参数解释:

模型部署 - onnx的导出和分析 - onnx 的架构和 onnx helper 的使用 - 学习记录-LMLPHP

op_type :The name of the operator to construct(要构造的运算符的名称)

这里填入的是onnx支持的算子的名称。这个地方是不可以乱写的,比如 不能将 ‘Mul’ 写成 ‘Mul2’,具体的参数查阅在 https://github.com/onnx/onnx/blob/main/docs/Operators.md

模型部署 - onnx的导出和分析 - onnx 的架构和 onnx helper 的使用 - 学习记录-LMLPHP

inputs :list of input names(节点输入名称),比如这里 Mul 的输入名字 是 ['a', 'x'] 两个
outputs : list of output names(节点输出名称)比如这里 Mul 的输出名字 是'c'一个
name : optional unique identifier for NodeProto(NodeProto的可选唯一标识符)

NodeProto 总结解释:

2.1.2、要点二:创建张量

helper.make_tensor, helper.make_value_info

一般用来定义网络的 input/output (会根据input/output的type来附加属性)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [10, 10])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 10])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 10])

2.1.3、要点三:创建图

helper.make_graph

   # 构建GraphProto
    graph = helper.make_graph([mul, add], 'sample-linear', [a, x, b], [y])

nodes: list of NodeProto
name (string): graph name
inputs: list of ValueInfoProto
outputs: list of ValueInfoProto

GraphProto 总结解释:

2.2、 create - onnx.convnet

import numpy as np
import onnx
from onnx import numpy_helper


def create_initializer_tensor(
        name: str,
        tensor_array: np.ndarray,
        data_type: onnx.TensorProto = onnx.TensorProto.FLOAT
) -> onnx.TensorProto:

    initializer = onnx.helper.make_tensor(
        name      = name,
        data_type = data_type,
        dims      = tensor_array.shape,
        vals      = tensor_array.flatten().tolist())

    return initializer


def main():
    
    input_batch    = 1;
    input_channel  = 3;
    input_height   = 64;
    input_width    = 64;
    output_channel = 16;

    input_shape    = [input_batch, input_channel, input_height, input_width]
    output_shape   = [input_batch, output_channel, 1, 1]

    ##########################创建input/output################################
    model_input_name  = "input0"
    model_output_name = "output0"

    input = onnx.helper.make_tensor_value_info(
            model_input_name,
            onnx.TensorProto.FLOAT,
            input_shape)

    output = onnx.helper.make_tensor_value_info(
            model_output_name, 
            onnx.TensorProto.FLOAT, 
            output_shape)
    

    ##########################创建第一个conv节点##############################
    conv1_output_name = "conv2d_1.output"
    conv1_in_ch       = input_channel
    conv1_out_ch      = 32
    conv1_kernel      = 3
    conv1_pads        = 1

    # 创建conv节点的权重信息
    conv1_weight    = np.random.rand(conv1_out_ch, conv1_in_ch, conv1_kernel, conv1_kernel)
    conv1_bias      = np.random.rand(conv1_out_ch)

    conv1_weight_name = "conv2d_1.weight"
    conv1_weight_initializer = create_initializer_tensor(
        name         = conv1_weight_name,
        tensor_array = conv1_weight,
        data_type    = onnx.TensorProto.FLOAT)


    conv1_bias_name  = "conv2d_1.bias"
    conv1_bias_initializer = create_initializer_tensor(
        name         = conv1_bias_name,
        tensor_array = conv1_bias,
        data_type    = onnx.TensorProto.FLOAT)

    # 创建conv节点,注意conv节点的输入有3个: input, w, b
    conv1_node = onnx.helper.make_node(
        name         = "conv2d_1",
        op_type      = "Conv",
        inputs       = [
            model_input_name, 
            conv1_weight_name,
            conv1_bias_name
        ],
        outputs      = [conv1_output_name],
        kernel_shape = [conv1_kernel, conv1_kernel],
        pads         = [conv1_pads, conv1_pads, conv1_pads, conv1_pads],
    )

    ##########################创建一个BatchNorm节点###########################
    bn1_output_name = "batchNorm1.output"

    # 为BN节点添加权重信息
    bn1_scale = np.random.rand(conv1_out_ch)
    bn1_bias  = np.random.rand(conv1_out_ch)
    bn1_mean  = np.random.rand(conv1_out_ch)
    bn1_var   = np.random.rand(conv1_out_ch)

    # 通过create_initializer_tensor创建权重,方法和创建conv节点一样
    bn1_scale_name = "batchNorm1.scale"
    bn1_bias_name  = "batchNorm1.bias"
    bn1_mean_name  = "batchNorm1.mean"
    bn1_var_name   = "batchNorm1.var"

    bn1_scale_initializer = create_initializer_tensor(
        name         = bn1_scale_name,
        tensor_array = bn1_scale,
        data_type    = onnx.TensorProto.FLOAT)
    bn1_bias_initializer = create_initializer_tensor(
        name         = bn1_bias_name,
        tensor_array = bn1_bias,
        data_type    = onnx.TensorProto.FLOAT)
    bn1_mean_initializer = create_initializer_tensor(
        name         = bn1_mean_name,
        tensor_array = bn1_mean,
        data_type    = onnx.TensorProto.FLOAT)
    bn1_var_initializer  = create_initializer_tensor(
        name         = bn1_var_name,
        tensor_array = bn1_var,
        data_type    = onnx.TensorProto.FLOAT)

    # 创建BN节点,注意BN节点的输入信息有5个: input, scale, bias, mean, var
    bn1_node = onnx.helper.make_node(
        name    = "batchNorm1",
        op_type = "BatchNormalization",
        inputs  = [
            conv1_output_name,
            bn1_scale_name,
            bn1_bias_name,
            bn1_mean_name,
            bn1_var_name
        ],
        outputs=[bn1_output_name],
    )

    ##########################创建一个ReLU节点###########################
    relu1_output_name = "relu1.output"

    # 创建ReLU节点,ReLU不需要权重,所以直接make_node就好了
    relu1_node = onnx.helper.make_node(
        name    = "relu1",
        op_type = "Relu",
        inputs  = [bn1_output_name],
        outputs = [relu1_output_name],
    )

    ##########################创建一个AveragePool节点####################
    avg_pool1_output_name = "avg_pool1.output"

    # 创建AvgPool节点,AvgPool不需要权重,所以直接make_node就好了
    avg_pool1_node = onnx.helper.make_node(
        name    = "avg_pool1",
        op_type = "GlobalAveragePool",
        inputs  = [relu1_output_name],
        outputs = [avg_pool1_output_name],
    )

    ##########################创建第二个conv节点##############################

    # 创建conv节点的属性
    conv2_in_ch  = conv1_out_ch
    conv2_out_ch = output_channel
    conv2_kernel = 1
    conv2_pads   = 0

    # 创建conv节点的权重信息
    conv2_weight    = np.random.rand(conv2_out_ch, conv2_in_ch, conv2_kernel, conv2_kernel)
    conv2_bias      = np.random.rand(conv2_out_ch)
    
    conv2_weight_name = "conv2d_2.weight"
    conv2_weight_initializer = create_initializer_tensor(
        name         = conv2_weight_name,
        tensor_array = conv2_weight,
        data_type    = onnx.TensorProto.FLOAT)

    conv2_bias_name  = "conv2d_2.bias"
    conv2_bias_initializer = create_initializer_tensor(
        name         = conv2_bias_name,
        tensor_array = conv2_bias,
        data_type    = onnx.TensorProto.FLOAT)

    # 创建conv节点,注意conv节点的输入有3个: input, w, b
    conv2_node = onnx.helper.make_node(
        name         = "conv2d_2",
        op_type      = "Conv",
        inputs       = [
            avg_pool1_output_name,
            conv2_weight_name,
            conv2_bias_name
        ],
        outputs      = [model_output_name],
        kernel_shape = [conv2_kernel, conv2_kernel],
        pads         = [conv2_pads, conv2_pads, conv2_pads, conv2_pads],
    )

    ##########################创建graph##############################
    graph = onnx.helper.make_graph(
        name    = "sample-convnet",
        inputs  = [input],
        outputs = [output],
        nodes   = [
            conv1_node, 
            bn1_node, 
            relu1_node, 
            avg_pool1_node, 
            conv2_node],
        initializer =[
            conv1_weight_initializer, 
            conv1_bias_initializer,
            bn1_scale_initializer, 
            bn1_bias_initializer,
            bn1_mean_initializer, 
            bn1_var_initializer,
            conv2_weight_initializer, 
            conv2_bias_initializer
        ],
    )

    ##########################创建model##############################
    model = onnx.helper.make_model(graph, producer_name="onnx-sample")
    model.opset_import[0].version = 12
    
    ##########################验证&保存model##############################
    model = onnx.shape_inference.infer_shapes(model)
    onnx.checker.check_model(model)
    print("Congratulations!! Succeed in creating {}.onnx".format(graph.name))
    onnx.save(model, "sample-convnet.onnx")


# 使用onnx.helper创建一个最基本的ConvNet
#         input (ch=3, h=64, w=64)
#           |
#          Conv (in_ch=3, out_ch=32, kernel=3, pads=1)
#           |
#        BatchNorm
#           |
#          ReLU
#           |
#         AvgPool
#           |
#          Conv (in_ch=32, out_ch=10, kernel=1, pads=0)
#           |
#         output (ch=10, h=1, w=1)

if __name__ == "__main__":
    main()

与案例1不同的地方在


def create_initializer_tensor(
        name: str,
        tensor_array: np.ndarray,
        data_type: onnx.TensorProto = onnx.TensorProto.FLOAT
) -> onnx.TensorProto:

    initializer = onnx.helper.make_tensor(
        name      = name,
        data_type = data_type,
        dims      = tensor_array.shape,
        vals      = tensor_array.flatten().tolist())

    return initializer

这里使用了 onnx.helper.make_tensor()

2.3、使用 onnx helper 导出的基本流程总结

  1. helper.make_node
  2. helper.make_tensor
  3. helper.make_value_info
  4. helper.make_graph
  5. helper.make_operatorsetid
  6. helper.make_model
  7. onnx.save_model

参考链接

三、parse onnx

下面的案例展示如何使用 python 把 onnx 打印出来

3.1、案例一

import onnx

def main(): 

    model = onnx.load("sample-linear.onnx")
    onnx.checker.check_model(model)

    graph        = model.graph
    nodes        = graph.node
    inputs       = graph.input
    outputs      = graph.output

    print("\n**************parse input/output*****************")
    for input in inputs:
        input_shape = []
        for d in input.type.tensor_type.shape.dim:
            if d.dim_value == 0:
                input_shape.append(None)
            else:
                input_shape.append(d.dim_value)
        print("Input info: \
                \n\tname:      {} \
                \n\tdata Type: {} \
                \n\tshape:     {}".format(input.name, input.type.tensor_type.elem_type, input_shape))

    for output in outputs:
        output_shape = []
        for d in output.type.tensor_type.shape.dim:
            if d.dim_value == 0:
                output_shape.append(None)
            else:
                output_shape.append(d.dim_value)
        print("Output info: \
                \n\tname:      {} \
                \n\tdata Type: {} \
                \n\tshape:     {}".format(input.name, output.type.tensor_type.elem_type, input_shape))

    print("\n**************parse node************************")
    for node in nodes:
        print("node info: \
                \n\tname:      {} \
                \n\top_type:   {} \
                \n\tinputs:    {} \
                \n\toutputs:   {}".format(node.name, node.op_type, node.input, node.output))


if __name__ == "__main__":
    main()


3.2、案例二(带有权重的)

这里有两个 py 文件

parser.py

import onnx
import numpy as np

# 注意,因为weight是以字节的形式存储的,所以要想读,需要转变为float类型
def read_weight(initializer: onnx.TensorProto):
    shape = initializer.dims
    data  = np.frombuffer(initializer.raw_data, dtype=np.float32).reshape(shape)
    print("\n**************parse weight data******************")
    print("initializer info: \
            \n\tname:      {} \
            \n\tdata:    \n{}".format(initializer.name, data))
    

def parse_onnx(model: onnx.ModelProto):
    graph        = model.graph
    initializers = graph.initializer
    nodes        = graph.node
    inputs       = graph.input
    outputs      = graph.output

    print("\n**************parse input/output*****************")
    for input in inputs:
        input_shape = []
        for d in input.type.tensor_type.shape.dim:
            if d.dim_value == 0:
                input_shape.append(None)
            else:
                input_shape.append(d.dim_value)
        print("Input info: \
                \n\tname:      {} \
                \n\tdata Type: {} \
                \n\tshape:     {}".format(input.name, input.type.tensor_type.elem_type, input_shape))

    for output in outputs:
        output_shape = []
        for d in output.type.tensor_type.shape.dim:
            if d.dim_value == 0:
                output_shape.append(None)
            else:
                output_shape.append(d.dim_value)
        print("Output info: \
                \n\tname:      {} \
                \n\tdata Type: {} \
                \n\tshape:     {}".format(input.name, output.type.tensor_type.elem_type, input_shape))

    print("\n**************parse node************************")
    for node in nodes:
        print("node info: \
                \n\tname:      {} \
                \n\top_type:   {} \
                \n\tinputs:    {} \
                \n\toutputs:   {}".format(node.name, node.op_type, node.input, node.output))

    print("\n**************parse initializer*****************")
    for initializer in initializers:
        print("initializer info: \
                \n\tname:      {} \
                \n\tdata_type: {} \
                \n\tshape:     {}".format(initializer.name, initializer.data_type, initializer.dims))


parse_onnx_cbr.py

import torch
import torch.nn as nn
import torch.onnx
import onnx
from parser import parse_onnx
from parser import read_weight

class Model(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)
        self.bn1   = nn.BatchNorm2d(num_features=16)
        self.act1  = nn.LeakyReLU()
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.act1(x)
        return x


def export_norm_onnx():
    input   = torch.rand(1, 3, 5, 5)
    model   = Model()
    model.eval()

    file    = "sample-cbr.onnx"
    torch.onnx.export(
        model         = model, 
        args          = (input,),
        f             = file,
        input_names   = ["input0"],
        output_names  = ["output0"],
        opset_version = 15)
    print("Finished normal onnx export")

def main():
    export_norm_onnx()
    model = onnx.load_model("sample-cbr.onnx")
    parse_onnx(model)

    initializers = model.graph.initializer
    for item in initializers:
        read_weight(item)


if __name__ == "__main__":
    main()

sample-cbr.onnx 模型下载地址

03-21 05:08