目录

LeetCode474.一和零

题目描述

思路1:动态规划

代码实现


题目链接

题目描述

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

  • 输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3

  • 输出:4

  • 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

  • 输入:strs = ["10", "0", "1"], m = 1, n = 1

  • 输出:2

  • 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600

  • 1 <= strs[i].length <= 100

  • strs[i] 仅由 '0' 和 '1' 组成

  • 1 <= m, n <= 100

思路1:动态规划

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dpi:最多有i个0和j个1的strs的最大子集的大小为dpi

  1. 确定递推公式

dpi 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dpi 就可以是 dpi - zeroNum + 1。

然后我们在遍历的过程中,取dpi的最大值。

所以递推公式:dpi = max(dpi, dpi - zeroNum + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  1. dp数组如何初始化

01背包的dp数组初始化为0就可以,因为物品价值不会是负数,初始为0,保证递推的时候dpi不会被初始值覆盖。

  1. 确定遍历顺序

01背包一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

代码如下:

for (string str : strs) { // 遍历物品
    int oneNum = 0, zeroNum = 0;
    for (char c : str) {
        if (c == '0') zeroNum++;
        else oneNum++;
    }
    for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
        for (int j = n; j >= oneNum; j--) {
            dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
        }
    }
}

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

代码实现
class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        //dp[i][j]表示i个0和j个1时的最大子集
        int[][] dp = new int[m + 1][n + 1];
        int oneNum, zeroNum;
        for (String str : strs) {
            oneNum = 0;
            zeroNum = 0;
            for (char ch : str.toCharArray()) {
                if (ch == '0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }
            //倒序遍历
            for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
}
02-26 08:21