提示工程(Prompt Engineering)
如果没有良好的提示设计和基础技术,模型很可能产生幻觉或编造答案,其危险在于,模型往往会产生非常有说服力和看似合理的答案,因此必须非常小心地设计安全缓解措施和地面模型的事实答案,所以提示工程应运而生。
微调(Fine-tuning)
微调通过训练比提示(prompt)中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示(prompt)中提供示例。这样可以节省成本并实现更低延迟的请求。
下面是Nvidia Inception大会上的两张图。微调大致可以分为参数优化微调(Parameter Efficient Fine Tuning)和全量微调(Fine Tuning),典型的就是LoRA方法和SFT。
LoRA微调
模型权重:在深度学习中,模型的权重(Weights)是指神经网络中的参数。这些参数用于调整和学习模型的行为。而参数的存储方式就是矩阵。
LoRA做了两件事:
(1)"冻结"了原来的权重,在旁边另起了一个单独的“微调权重”来进行训练。
(2)“降本增效”。主要参考资料里的微软论文研究发现,微调前2行2列的效果与等于计算全部行列(LoRA有两个转换器,一个是把“满秩”转换为“低秩”,方便微调,另一个再将“低秩”转换为“满秩”。矩阵的“秩”是线性代数的一个概念,描述了这个矩阵的信息丰富度和多样性。)