目录
1 主要内容
程序完全复现文献《A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF with Carbon Emission Trading》,建立了一个考虑碳排放交易的最优模型,首先,对测试系统(6节点或者30节点或者118节点系统)进行了分区,以便后续ADMM算法的应用,其次,构建了DC-DOPF的最优潮流模型作为主要应用场景,以发电+买卖排放配额费用之和为目标函数,考虑碳排放约束、潮流约束以及耦合约束等约束条件,程序考虑了负荷需求响应和碳排放交易,从而符合目前低碳调度的研究热点,算法方面采用ADMM算法,也就是交替方向乘子法,更加创新,而且求解的效果更好,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均明确可靠来源,非常方便学习!
-
目标函数
-
计算步骤
-
节点系统
程序默认节点系统为118节点系统,代码如下:
FileName = 'SCUC_dat/DDOPF118.txt'; %Corresponding to the 118-bus system in literature [7];对应文献[7]中的118-bus system
可以通过修改节点系统名称来验证其他节点(6节点或者30节点)系统模型,程序已经内置了这部分代码,可以通过取消注释即可实现。
% FileName = 'SCUC_dat/SCUC6.txt'; %Corresponding to the 6-bus System;对应文中6bus例子 % FileName = 'SCUC_dat/SCUC30.txt'; %Corresponding to the 30-bus System;对应文中30bus例子 % FileName = 'SCUC_dat/SCUC6-2.txt'; %Corresponding to the 6-bus System in literature [7];对应文献[7]中的6-bus system % FileName = 'SCUC_dat/SCUC1062-2.txt'; %Corresponding to the 1062-bus System;对应文中1062-bus例子 % FileName = 'SCUC_dat/RTS48.txt'; %Corresponding to the RTS-48 bus system.The test system can obtain from [44];对应文中RTS0-48 bus例子
2 部分代码
if isequal(k,1) %第一次形成p_t并记下对应的区间即可 p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引 seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引 for i = 1:size(allNodes,1) bus_sequence_index = find(ismember(SCUC_data.busUnits.bus_sequence,allNodes(i,1))==1); %allNodes(i,1)在SCUC_data.busUnits.bus_sequence上的索引 P_start_index = (PbusUnitsNumber(i,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量P前面的所有变量P和θ的总数量 Seta_start_index = (PbusUnitsNumber(i+1,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量θ前面的所有变量P和θ的总数量 if ~isempty(bus_sequence_index) %The bus with unit. 节点上有发电机 for j = 1:size(SCUC_data.busUnits.unitIndex{bus_sequence_index,1},1) p_t(units_number,:) = XJ(P_start_index*T + (j-1)*T + 1:P_start_index*T + (j-1)*T + T);%P p_t_index(units_index,1) = P_start_index*T + (j-1)*T + 1; p_t_index(units_index,2) = P_start_index*T + (j-1)*T + T; p_t_index(units_index,3) = units_number; units_number = units_number + 1; units_index = units_index + 1; end else %The bus without unit.节点上没有发电机 p_t(units_number,:) = XJ(P_start_index*T + 1:P_start_index*T + T);%P units_number = units_number + 1; end seta_t(i,:) = XJ(Seta_start_index*T + 1:Seta_start_index*T + T);%θ seta_t_index(i,1) = Seta_start_index*T + 1; seta_t_index(i,2) = Seta_start_index*T + T; seta_t_index(i,3) = i; end else %按照第一次记下的变量顺序即可 p_t = zeros(partitionData.PIUnitsNumber{end}-partitionData.PIUnitsNumber{1},T); seta_t = zeros(size(seta_t_index,1),T); for i = 1:size(p_t_index,1) p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2)); end for i = 1:size(seta_t_index,1) seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2)); end end elseif isequal(includeDR,'yes') PINumber = partitionData.PINumber; EINumber = partitionData.EINumber; piecewiseNumber = SCUC_data.elasticBus.piecewiseNumber; %分段函数分的段数 K = SCUC_data.elasticBus.N;%弹性节点数量 dr_t = zeros(K,T); %弹性负荷变量dr hr_t = zeros(piecewiseNumber,T,K); %辅助变量Hr,第一个参数对应分段数,第二个参数对应时段,第三个参数对应节点编号 %按照片区顺序 for i = 1:n Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量 Hindex = Dindex + T; %取dr和hr for j = 1:EINumber{i+1}-EINumber{i} %dr的行按照partitionData.allElasticityNodes中节点编号的顺序 dr_t(EINumber{i}-1+j,:) = XJ((j-1)*(piecewiseNumber+1)*T+1+Dindex:(j-1)*(piecewiseNumber+1)*T+T+Dindex); %dr for r = 1:piecewiseNumber hr_t(r,:,EINumber{i}-1+j) = XJ((j-1)*(piecewiseNumber+1)*T+(r-1)*T+1+Hindex:(j-1)*(piecewiseNumber+1)*T+(r-1)*T+T+Hindex); %hr end end end if isequal(k,1) p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引 seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引 %按照片区顺序 for i = 1:n Pindex = 2*(PINumber{i}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量 Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量 Hindex = Dindex + T; %取P和θ for j = 1:PINumber{i+1}-PINumber{i} %xx的行按照partitionData.allNodes(即allNodes)中节点编号的顺序 p_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+1+Pindex:2*(j-1)*T+T+Pindex);%P seta_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+T+1+Pindex:2*(j-1)*T+2*T+Pindex);%θ p_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+1+Pindex; p_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+T+Pindex; p_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j; seta_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+T+1+Pindex; seta_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+2*T+Pindex; seta_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j; end end else %按照第一次记下的变量顺序即可 p_t = zeros(size(p_t_index,1),T); seta_t = zeros(size(seta_t_index,1),T); for i = 1:size(p_t_index,1) p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2)); end for i = 1:size(seta_t_index,1) seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2)); end end else dr_t = []; %弹性负荷变量dr hr_t = []; %辅助变量Hr for i = 1:N p_t(i,:) = XJ((i-1)*2*T+1:(i-1)*2*T+T);%P seta_t(i,:) = XJ((i-1)*2*T+T+1:(i-1)*2*T+2*T);%θ end end